Microprocessors and Microcontrollers

Module 1: Architecture of Microprocessors (6)

General definitions of mini computers, microprocessors, micro controllers
and digital signal processors. Overview of 8085 microprocessor. Overview
of 8086 microprocessor. Signals and pins of 8086 microprocessor

Module 2: Assembly language of 8086 (6)

Description of Instructions. Assembly directives. Assembly software
programs with algorithms

Module 3: Interfacing with 8086 (8)

Interfacing with RAMs, ROMs along with the explanation of timing
diagrams. Interfacing with peripheral ICs like 8255, 8254, 8279, 8259, 8259
etc. Interfacing with key boards, LEDs, LCDs, ADCs, and DACSs etc.

Module 4: Coprocessor 8087 (4)
Architecture of 8087, interfacing with 8086. Data types, instructions and programming
Module 5: Architecture of Micro controllers (4)

Overview of the architecture of 8051 microcontroller. Overview of the
architecture of 8096 16 bit microcontroller

Module 6: Assembly language of 8051 (4)

Description of Instructions. Assembly directives. Assembly software programs with
algorithms

Module 7: Interfacing with 8051 (5)

Interfacing with keyboards, LEDs, 7 segment LEDs, LCDs, Interfacing with ADCs.
Interfacing with DACs, etc.

Module 8: High end processors (2)

Introduction to 80386 and 80486

Lecture Plan:

Module Learning Units Hours Total
1. Architecture of | 1. General definitions of mini computers,
Microprocessors microprocessors, micro controllers and digital 1
signal processors 6
2. Overview of 8085 microprocessor 1
3. Overview of 8086 microprocessor 25
4. Signals and pins of 8086 microprocessor 1.5
2.Assembly 5. Description of Instructions 2.5
language of 8086 | 6. Assembly directives 0.5 6
7. Algorithms with assembly software programs 3
3. Interfacing with | 8. Interfacing with RAMs, ROMs along with the
8086 explanation of timing diagrams 2
9. Interfacing with peripheral 1Cs like 8255,8254, 8
8279, 8259, 8259, key boards, LEDs, LCDs, 6
ADCs, DACs etc.
4. Coprocessor 10. Architecture of 8087, interfacing with 8086 2
8087 11. Data types, instructions and programming 5 4
5. Architecture of | 12. Overview of the architecture of 8051 9
Micro controllers microcontroller. 4
13. Overview of the architecture of 8096 16 bit 2
microcontroller
6. Assembly 14.Description of Instructions 2
language of 8051 | 15 Assembly directives 1 S
16. Algorithms with assembly software programs 2
7. Interfacing with | 17. Interfacing with keyboards, LEDs, 7 segment 4 4
8051 LEDs, LCDs, ADCs, DACs
8. High end 18. Introduction to 80386 and 80486 9 9

[processors

Intel C8085

40-pin ceramic DIP
Purple ceramic/black top/tin pins

8085 Microprocessor

The salient features of 8085 up are :
It 1s a 8 bit microprocessor.
It 1s manufactured with N-MOS technology.

It has 16 bit address bus and hence can address upto

216 = 65536 bytes (64KB) memory locations through
AO-Also

The first 8 lines of address bus and 8 lines of databus are
multiplexed AD, — AD-.

Data bus 1s a group of 8 lines D, — D-.
It supports external interrupt request.
A 16 bit program counter (PC)

A 16 bit stack pointer (SP)

S1x 8-bit general purpose register arranged 1n pairs: BC,
DE, HL.

It requires a signal +5V power supply and operates at 3.2
MHZ single phase clock.

It 1s enclosed with 40 pins DIP (Dual 1n line package).

Memory:

* Program, data and stack memories occupy the same

memory space. The total addressable memory size 1s 64
KB.

 Program memory - program can be located anywhere in
memory. Jump, branch and call instructions use 16-bit
addresses, i.e. they can be used to jump/branch anywhere
within 64 KB. All jump/branch instructions use absolute
addressing.

« Data memory - the processor always uses 16-bit addresses
so that data can be placed anywhere.

« Stack memory is limited only by the size of memory.
Stack grows downward.

« First 64 bytes 1n a zero memory page should be reserved
for vectors used by RST instructions.

Interrupts

* The processor has 5 interrupts. They are presented below
in the order of their priority (from lowest to highest):

 INTR 1s maskable 8080A compatible interrupt. When the
interrupt occurs the processor fetches from the bus one
instruction, usually one of these instructions:

* One of the 8 RST instructions (RST, - RST,). The
processor saves current program counter into stack and
branches to memory location N * 8 (where N 1s a 3-bit
number from 0 to 7 supplied with the RST 1instruction).

 CALL instruction (3 byte instruction). The processor calls
the subroutine, address of which is specified in the second
and third bytes of the instruction.

« RST5.5 1s a maskable interrupt. When this interrupt 1s
received the processor saves the contents of the PC register
into stack and branches to 2CH (hexadecimal) address.

« RSTG6.5 1s a maskable interrupt. When this interrupt 1s
received the processor saves the contents of the PC register
into stack and branches to 34H (hexadecimal) address.

 RSTY/.5 1s a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC register
into stack and branches to 3CH (hexadecimal) address.

 TRAP 1s a non-maskable interrupt. When this interrupt is
received the processor saves the contents of the PC register
into stack and branches to 24H (hexadecimal) address.

« All maskable interrupts can be enabled or disabled using
EI and DI instructions. RST 5.5, RST6.5 and RST7.5
interrupts can be enabled or disabled individually using
SIM instruction.

Reset Signals

RESET IN : When this signal goes low, the program
counter (PC) 1s set to Zero, up 1s reset and resets the
interrupt enable and HLDA flip-flops.

The data and address buses and the control lines are 3-
stated during RESET and because of asynchronous nature
of RESET, the processor internal registers and flags may
be altered by RESET with unpredictable results.

RESET IN 1s a Schmitt-triggered input, allowing
connection to an R-C network for power-on RESET delay.

Upon power-up, RESET IN must remain low for at least
10 ms after minimum Vcc has been reached.

* For proper reset operation after the power — up duration,
RESET IN should be kept low a minimum of three clock
periods.

* The CPU is held in the reset condition as long as RESET
IN 1s applied. Typical Power-on RESET RC values R, =
75KQ, C, = 1pF.

« RESET OUT: This signal indicates that up 1s being reset.
This signal can be used to reset other devices. The signal 1s

synchronized to the processor clock and lasts an integral
number of clock periods.

Serial communication Signal

« SID - Serial Input Data Line: The data on this line is
loaded into accumulator bit 7 when ever a RIM instruction
1s executed.

« SOD - Serial Output Data Line: The SIM instruction
loads the value of bit 7 of the accumulator into SOD latch
if bit 6 (SOE) of the accumulator 1s 1.

DMA Signals

HOLD: Indicates that another master is requesting the use
of the address and data buses. The CPU, upon receiving
the hold request, will relinquish the use of the bus as soon
as the completion of the current bus transfer.

Internal processing can continue. The processor can regain
the bus only after the HOLD is removed.

When the HOLD is acknowledged, the Address, Data RD,
WR and IO/M lines are 3-stated.

 HLDA: Hold Acknowledge : Indicates that the CPU has
received the HOLD request and that it will relinquish the

bus 1n the next clock cycle.

« HLDA goes low after the Hold request is removed. The
CPU takes the bus one half clock cycle after HLDA goes

low.

READY : This signal Synchronizes the fast CPU and the
slow memory, peripherals.

If READY 1s high during a read or write cycle, it indicates
that the memory or peripheral 1s ready to send or receive
data.

If READY 1s low, the CPU will wait an integral number of
clock cycle for READY to go high before completing the
read or write cycle.

READY must conform to specified setup and hold times.

Registers

Accumulator or A register is an 8-bit register used for
arithmetic, logic, I/0 and load/store operations.

Flag Register has five 1-bit flags.
Sign - set if the most significant bit of the result is set.

Zero - set if the result 1s zero.

Auxiliary carry - set if there was a carry out from bit 3 to
bit 4 of the result.

Parity - set if the parity (the number of set bits in the
result) 1s even.

« Carry - set if there was a carry during addition, or borrow
during subtraction/comparison/rotation.

General Registers:

« 8-bit B and 8-bit C registers can be used as one 16-bit BC
register pair. When used as a pair the C register contains
low-order byte. Some instructions may use BC register as a
data pointer.

« 8-bit D and 8-bit E registers can be used as one 16-bit DE
register pair. When used as a pair the E register contains
low-order byte. Some instructions may use DE register as a
data pointer.

« 8-bit H and 8-bit L registers can be used as one 16-bit HL
register pair. When used as a pair the L register contains
low-order byte. HL register usually contains a data pointer
used to reference memory addresses.

 Stack pointer is a 16 bit register. This register is always
decremented/incremented by 2 during push and pop.

« Program counter is a 16-bit register.

Instruction Set

8085 1nstruction set consists of the following instructions:
Data moving instructions.
Arithmetic - add, subtract, increment and decrement.

Logic - AND, OR, XOR and rotate.

Control transfer - conditional, unconditional, call
subroutine, return from subroutine and restarts.

Input/Output instructions.

Other - setting/clearing flag bits, enabling/disabling
interrupts, stack operations, etc.

Addressing modes:

« Register - references the data in a register or in a register
pair.
Register indirect - instruction specifies register pair
containing address, where the data 1s located.
Direct, Immediate - 8 or 16-bit data.

8086 Microprocessor

It is a 16 bit pp.

8086 has a 20 bit address bus can access upto 220 memory
locations (1 MB) .

It can support upto 64K 1/O ports.

It provides 14, 16-bit registers.

It has multiplexed address and data bus AD,- AD s
and A5 — Ag,.

Next Page

It requires single phase clock with 33% duty cycle to
provide internal timing.

8086 Is designed to operate in two modes, Minimum and
Maximum.

It can prefetches upto 6 instruction bytes from memory and
queues them in order to speed up instruction execution.

It requires +5V power supply.
A 40 pin dual in line package.

Next Page

Minimum and Maximum Modes:

« The minimum mode is selected by applying logic 1 to the

MN / MX# input pin. This is a single microprocessor
configuration.

e The maximum mode is selected by applying logic O to the

MN / MX# input pin. This is a multi micro processors
configuration.

Intel C8086

Intel C8086

5> MHz
40-pin ceramic DIP
Rare Intel C8086 processor in purple ceramic DIP package

with side-brazed pins.

Internal Architecture of 8086

» 8086 has two blocks BIU and EU.

e The BIU performs all bus operations such as instruction
fetching, reading and writing operands for memory and
calculating the addresses of the memory operands. The
Instruction bytes are transferred to the instruction queue.

e EU executes instructions from the instruction system byte
queue.

Next Page

« Both units operate asynchronously to give the 8086 an
overlapping instruction fetch and execution mechanism
which is called as Pipelining. This results in efficient use
of the system bus and system performance.

 BIU contains Instruction queue, Segment registers,
Instruction pointer, Address adder.

e EU contains Control circuitry, Instruction decoder, ALU,
Pointer and Index register, Flag register.

Next Page

« BUS INTERFACR UNIT:

e |t provides a full 16 bit bidirectional data bus and 20 bit
address bus.

e The bus interface unit is responsible for performing all
external bus operations.

Specifically it has the following functions:

 Instruction fetch, Instruction queuing, Operand fetch and
storage, Address relocation and Bus control.

 The BIU uses a mechanism known as an instruction stream
queue to implement a pipeline architecture.
Next Page

« This queue permits prefetch of up to six bytes of
Instruction code. When ever the queue of the BIU is not
full, it has room for at least two more bytes and at the same
time the EU is not requesting it to read or write operands
from memory, the BIU is free to look ahead in the program
by prefetching the next sequential instruction.

» These prefetching instructions are held in its FIFO queue.
With its 16 bit data bus, the BIU fetches two instruction
bytes In a single memory cycle.

o After a byte is loaded at the input end of the queue, it
automatically shifts up through the FIFO to the empty
location nearest the output.

Next Page

« The EU accesses the queue from the output end. It reads

one instruction byte after the other from the output of the
queue. If the queue is full and the EU is not requesting
access to operand in memory.

These intervals of no bus activity, which may occur
between bus cycles are known as ldle state.

If the BIU Is already in the process of fetching an
Instruction when the EU request it to read or write
operands from memory or 1/O, the BIU first completes the
Instruction fetch bus cycle before initiating the operand
read / write cycle.

Next Page

« The BIU also contains a dedicated adder which iIs used to
generate the 20bit physical address that is output on the
address bus. This address is formed by adding an appended
16 bit segment address and a 16 bit offset address.

o For example: The physical address of the next instruction
to be fetched is formed by combining the current contents
of the code segment CS register and the current contents of
the instruction pointer IP register.

 The BIU is also responsible for generating bus control
signals such as those for memory read or write and 1/O
read or write.

Next Page

« EXECUTION UNIT : The Execution unit is responsible
for decoding and executing all instructions.

* The EU extracts instructions from the top of the queue In
the BIU, decodes them, generates operands if necessary,
passes them to the BIU and requests it to perform the read
or write bys cycles to memory or 1/O and perform the
operation specified by the instruction on the operands.

 During the execution of the instruction, the EU tests the
status and control flags and updates them based on the
results of executing the instruction.

Next Page

 |If the queue is empty, the EU walits for the next instruction
byte to be fetched and shifted to top of the queue.

* When the EU executes a branch or jump instruction, it
transfers control to a location corresponding to another set
of sequential instructions.

« Whenever this happens, the BIU automatically resets the
queue and then begins to fetch instructions from this new
location to refill the queue.

COMMON SIGNALS

Name Function Type
AD 15— AD Address Data Bus Bidiregtional
A19/Sg—A16/S3 Address / Status Output 3-State
BWE /S7 Bus High Enable / Output
_ Status 3- Statre)z
MN / MX Minimum / Input
Maximum Mode
L Control
RD Read Control Output 3- State
TEST Wait On Test Control Input
READY Wait State Controls Input
RESET System Reset Input
Non - Maskable
NMI Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
Vce +5V Input
GND Ground

Minimum Mode Signals (MN/ MX = Vcc)

Name Function Type
HOLD Hold Request Input
HLDA Hold Acknowledge Output
WR - Output
Write Control 3 stgte
M/10 Memory or 10 Control Og:tgu,
tate
- Data Transmit / Output
DTR Receiver 3 State
Date Enable Output
DEN 3-State
ALE Address Latch Enable Output
INTA Interrupt Acknowledge Output

Maximum mode signals (MN / MX = GND)

Name Function Type
RQ/GT1,0 | Request/Grant Bus Bidirectional
Access Control
_ o Output,
LOCK Bus Priority Lock Control 3. State
_ Output,
S,—- S, Bus Cycle Status 3- State

QS1, QS0 Instruction Queue Status Output

Minimum Mode Interface

* When the Minimum mode operation Is selected, the 8086
provides all control signals needed to implement the
memory and 1/O interface.

e The minimum mode signal can be divided into the

following basic groups : address/data bus, status, control,
Interrupt and DMA.

« Address/Data Bus : these lines serve two functions. As an
address bus is 20 bits long and consists of signal lines A,
through A,q. A4 represents the MSB and A, LSB. A 20bit
address gives the 8086 a 1Mbyte memory address space.
More over it has an independent 1/O address space which
Is 64K bytes in length.

Next Page

e The 16 data bus lines D, through D, are actually
multiplexed with address lines A, through Az
respectively. By multiplexed we mean that the bus work as
an address bus during first machine cycle and as a data bus
during next machine cycles. D¢ Is the MSB and D, LSB.

* When acting as a data bus, they carry read/write data for
memory, input/output data for 1/O devices, and interrupt
type codes from an interrupt controller.

Next Page

Vce GFD

INTR —mmp
_ AO'A15’A16/S3_ A19/86
INTA <«—
-I nterrupt Address / data bus
interface -
TEST >
DO - D15
NMI =
8086
RESET > MPU ALE
—————» BHE/S,
————> MI/IO Memory
DMA HOLD > - » DT/R 1/0 controls
interface S
HLDA < — ° RD
— WR
Vce _
> DEN
Mode select
> < READY
MN / MX
T Next Page
CLK clock

Block Diagram of the Minimum Mode 8086 MPU

 Status signal : The four most significant address lines A4
through A, are also multiplexed but in this case with
status signals S; through S;. These status bits are output on
the bus at the same time that data are transferred over the
other bus lines.

e BitS, and S; together from a 2 bit binary code that
Identifies which of the 8086 internal segment registers are
used to generate the physical address that was output on
the address bus during the current bus cycle.

e Code S,S; =00 identifies a register known as extra
segment register as the source of the segment address.

Next Page

Sy S3 Segment Register
0 0 Extra
0 1 Stack
1 0 Code / none
1 1 Data

Memory segment status codes.

Next Page

 Status line S reflects the status of another internal
characteristic of the 8086. It is the logic level of the
Internal enable flag. The last status bit S is always at the
logic O level.

o Control Signals : The control signals are provided to
support the 8086 memory 1/O interfaces. They control
functions such as when the bus is to carry a valid address
In which direction data are to be transferred over the bus,
when valid write data are on the bus and when to put read
data on the system bus.

Next Page

 ALE isapulse to logic 1 that signals external circuitry
when a valid address word is on the bus. This address must
be latched in external circuitry on the 1-to-0 edge of the
pulse at ALE.

* Another control signal that is produced during the bus
cycle is BHE bank high enable. Logic 0 on this used as a
memory enable signal for the most significant byte half of
the data bus Dg through D,. These lines also serves a
second function, which is as the S, status line.

 Using the M/IO and DT/R lines, the 8086 signals which

type of bus cycle is in progress and in which direction data
are to be transferred over the bus.

Next Page

« The logic level of M/IO tells external circuitry whether a
memory or /O transfer is taking place over the bus. Logic
1 at this output signals a memory operation and logic 0 an
1/O operation.

« The direction of data transfer over the bus is signaled by
the logic level output at DT/R. When this line is logic 1
during the data transfer part of a bus cycle, the bus is in the
transmit mode. Therefore, data are either written into
memory or output to an I/O device.

* On the other hand, logic 0 at DT/R signals that the bus is In
the receive mode. This corresponds to reading data from
memory or input of data from an input port.

Next Page

e The signal read RD and write WR indicates that a read bus
cycle or a write bus cycle is in progress. The 8086 switches
WR to logic 0 to signal external device that valid write or
output data are on the bus.

e On the other hand, RD indicates that the 8086 Is
performing a read of data of the bus. During read
operations, one other control signal is also supplied. This is
DEN (data enable) and it signals external devices when
they should put data on the bus.

« There is one other control signal that is involved with the
memory and 1/O interface. This is the READY signal.

Next Page

« READY signal is used to insert wait states into the bus
cycle such that it is extended by a number of clock periods.
This signal is provided by an external clock generator
device and can be supplied by the memory or /O sub-
system to signal the 8086 when they are ready to permit
the data transfer to be completed.

* Interrupt signals : The key interrupt interface signals are
Interrupt request (INTR) and interrupt acknowledge
(INTA).

 INTR is an input to the 8086 that can be used by an
external device to signal that it need to be serviced.

Next Page

e Logic 1 at INTR represents an active interrupt request.
When an interrupt request has been recognized by the
8086, It indicates this fact to external circuit with pulse to
logic 0 at the INTA output.

o The TEST input is also related to the external interrupt
Interface. Execution of a WAIT instruction causes the 8086
to check the logic level at the TEST input.

 |f the logic 1 is found, the MPU suspend operation and
goes into the idle state. The 8086 no longer executes
Instructions, instead it repeatedly checks the logic level of
the TEST input waliting for its transition back to logic 0.

Next Page

« As TEST switches to 0, execution resume with the next
Instruction in the program. This feature can be used to
synchronize the operation of the 8086 to an event in
external hardware.

* There are two more inputs in the interrupt interface: the
nonmaskable interrupt NMI and the reset interrupt RESET.

e On the 0-to-1 transition of NMI control is passed to a
nonmaskable interrupt service routine. The RESET input is
used to provide a hardware reset for the 8086. Switching
RESET to logic O initializes the internal register of the
8086 and Initiates a reset service routine.

Next Page

 DMA Interface signals :The direct memory access DMA
Interface of the 8086 minimum mode consist of the HOLD

and HLDA signals.

* When an external device wants to take control of the
system bus, it signals to the 8086 by switching HOLD to
the logic 1 level. At the completion of the current bus
cycle, the 8086 enters the hold state. In the hold state,
signal lines AD, through AD,:, A,¢/S; through A,¢/S;,
BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the
high Z state. The 8086 signals external device that it is in
this state by switching its HLDA output to logic 1 level.

Next Page

Maximum Mode Interface

When the 8086 Is set for the maximum-mode
configuration, it provides signals for implementing a
multiprocessor / coprocessor system environment.

By multiprocessor environment we mean that one
microprocessor exists in the system and that each
processor Is executing Its own program.

Usually in this type of system environment, there are
some system resources that are common to all processors.

They are called as global resources. There are also other
resources that are assigned to specific processors. These
are known as local or private resources.

Next Page

« Coprocessor also means that there Is a second processor in
the system. In this two processor does not access the bus at
the same time.

* One passes the control of the system bus to the other and
then may suspend its operation.

* In the maximum-mode 8086 system, facilities are provided
for implementing allocation of global resources and
passing bus control to other microprocessor or
Coprocessor.

Next Page

INIT

> — _ Multi Bus
| So <«— BUSY
s «—>CBRQ
S, 8280 Bus [BPRO
[» LOCK arbiter m
CRQLCK——— il
CLK RESB ——— —— BREQ
Vce GND SYSB/RESB —] j L
ANYREQ — CLK AEN T0B _[* BCLK
o — A -
INTR — Lock CLK AEN : I oo
. S, —
TEST — >t J CLK AEN TOB > MRDC - vTe
5 aic —
NMI LY B s A
, S, o | Si 8288 Bus — > IORC
RESET S, controller —IOWC
DEN ——> AIOWC
DT/R — INTA
- » MCE/PDEN
MP ALE
8086 MPU — e
» DT/R
> ALE

A

¢ ¢ Local bus control

RQ/GT, RQ/GT, 8086 Maximum mode Block Diagram

o 8288 Bus Controller — Bus Command and Control
Signals: 8086 does not directly provide all the signals that
are required to control the memory, 1/0O and interrupt
Interfaces.

« Specially the WR, M/IO, DT/R, DEN, ALE and INTA,
signals are no longer produced by the 8086. Instead it
outputs three status signals S, S;, S, prior to the initiation
of each bus cycle. This 3- bit bus status code identifies
which type of bus cycle is to follow.

« S,S,S, are input to the external bus controller device, the
bus controller generates the appropriately timed command
and control signals.

Next Page

Status Inputs CPU Cycles 8288

S, S S, Command

0 0 0 Interrupt Acknowledge | |NTA

0 0 1 Read 1/O Port IORC

0 1 0 Write 1/0O Port IOWC, AIOWC
0 1 1 Halt None

1 0 0 Instruction Fetch MRDC

1 0 1 Read Memory MRDC

1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None

Bus Status Codes

Next Page

e The 8288 produces one or two of these eight command
signals for each bus cycles. For instance, when the 8086
outputs the code S,S;S, equals 001, it indicates that an 1/0
read cycle is to be performed.

e Inthe code 111 is output by the 8086, It is signaling that no
bus activity is to take place.

» The control outputs produced by the 8288 are DEN, DT/R
and ALE. These 3 signals provide the same functions as
those described for the minimum system mode. This set of
bus commands and control signals is compatible with the
Multibus and industry standard for interfacing
microprocessor systems.

Next Page

e 8289 Bus Arbiter — Bus Arbitration and Lock Signals :
This device permits processors to reside on the system bus.
It does this by implementing the Multibus arbitration
protocol in an 8086-based system.

« Addition of the 8288 bus controller and 8289 bus arbiter
frees a number of the 8086 pins for use to produce control
signals that are needed to support multiple processors.

« Bus priority lock (LOCK) is one of these signals. It is

Input to the bus arbiter together with status signals S,
through S..

Next Page

e The output of 8289 are bus arbitration signals: bus busy
(BUSY), common bus request (CBRQ), bus priority out
(BPRO), bus priority in (BPRN), bus request (BREQ) and
bus clock (BCLK).

e They correspond to the bus exchange signals of the
Multibus and are used to lock other processor off the
system bus during the execution of an instruction by the
8086.

 In this way the processor can be assured of uninterrupted
access to common system resources such as global
memory.

Next Page

e Queue Status Signals : Two new signals that are produced
by the 8086 In the maximum-mode system are queue status
outputs QS, and QS;. Together they form a 2-bit queue
status code, QS,QS,.

* Following table shows the four different queue status.

Next Page

QS; QS, Queue Status

0 (low) | 0 No Operation. During the last clock cycle, nothing was
taken from the queue.

0 1 | First Byte. The byte taken from the queue was the first
byte of the instruction.

1 (high) | o | Queue Empty. The queue has been reinitialized as a result
of the execution of a transfer instruction.

Subsequent Byte. The byte taken from the queue was a
subsequent byte of the instruction.

Queue status codes

Next Page

e Local Bus Control Signal — Request / Grant Signals: In
a maximum mode configuration, the minimum mode
HOLD, HLDA interface is also changed. These two are
replaced by request/grant lines RQ/ GT,and RQ/ GT,,
respectively. They provide a prioritized bus access
mechanism for accessing the local bus.

Internal Registers of 8086

* The 8086 has four groups of the user accessible internal
registers. They are the instruction pointer, four data

registers, four pointer and index register, four segment
registers.

« The 8086 has a total of fourteen 16-bit registers including a
16 bit register called the status register, with 9 of bits
Implemented for status and control flags.

Next Page

* Most of the registers contain data/instruction offsets within
64 KB memory segment. There are four different 64 KB
segments for instructions, stack, data and extra data. To
specify where in 1 MB of processor memory these 4
segments are located the processor uses four segment
registers:

o Code segment (CS) is a 16-bit register containing address
of 64 KB segment with processor instructions. The
processor uses CS segment for all accesses to instructions
referenced by instruction pointer (IP) register. CS register
cannot be changed directly. The CS register is
automatically updated during far jump, far call and far

return instructions.
Next Page

o Stack segment (SS) Is a 16-bit register containing address
of 64KB segment with program stack. By default, the
processor assumes that all data referenced by the stack
pointer (SP) and base pointer (BP) registers is located in
the stack segment. SS register can be changed directly
using POP instruction.

e Data segment (DS) is a 16-bit register containing address
of 64KB segment with program data. By default, the
processor assumes that all data referenced by general
registers (AX, BX, CX, DX) and index register (SI, DI) is
located In the data segment. DS register can be changed
directly using POP and LDS instructions.

Next Page

o Extrasegment (ES) is a 16-bit register containing address
of 64KB segment, usually with program data. By default,
the processor assumes that the DI register references the
ES segment in string manipulation instructions. ES register
can be changed directly using POP and LES instructions.

 [tis possible to change default segments used by general
and index registers by prefixing instructions with a CS, SS,
DS or ES prefix.

« All general registers of the 8086 microprocessor can be
used for arithmetic and logic operations. The general
registers are:

Next Page

e Accumulator register consists of two 8-bit registers AL
and AH, which can be combined together and used as a 16-
bit register AX. AL in this case contains the low-order byte
of the word, and AH contains the high-order byte.
Accumulator can be used for 1/O operations and string
manipulation.

» Base register consists of two 8-bit registers BL and BH,
which can be combined together and used as a 16-bit
register BX. BL in this case contains the low-order byte of
the word, and BH contains the high-order byte. BX register
usually contains a data pointer used for based, based
Indexed or register indirect addressing.

Next Page

e Count register consists of two 8-bit registers CL and CH,
which can be combined together and used as a 16-bit
register CX. When combined, CL register contains the
low-order byte of the word, and CH contains the high-
order byte. Count register can be used in Loop, shift/rotate
Instructions and as a counter in string manipulation,.

o Data register consists of two 8-bit registers DL and DH,
which can be combined together and used as a 16-bit
register DX. When combined, DL register contains the
low-order byte of the word, and DH contains the high-
order byte. Data register can be used as a port number in
|/O operations. In integer 32-bit multiply and divide
Instruction the DX register contains high-order word of the

Initial or resulting number.
Next Page

The following registers are both general and index
registers:

Stack Pointer (SP) is a 16-bit register pointing to program
stack.

Base Pointer (BP) is a 16-bit register pointing to data in

stack segment. BP register is usually used for based, based
Indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. Sl is used for
Indexed, based indexed and register indirect addressing, as
well as a source data address in string manipulation
Instructions.

Next Page

Destination Index (Dl) is a 16-bit register. DI is used for
Indexed, based indexed and register indirect addressing, as
well as a destination data address in string manipulation
Instructions.

Other registers:

Instruction Pointer (IP) Is a 16-bit register.
Flags Is a 16-bit register containing 9 one bit flags.

Overflow Flag (OF) - set if the result is too large positive
number, or Is too small negative number to fit into
destination operand.

Next Page

Direction Flag (DF) - if set then string manipulation
Instructions will auto-decrement index registers. If cleared
then the index registers will be auto-incremented.

Interrupt-enable Flag (IF) - setting this bit enables
maskable interrupts.

Single-step Flag (TF) - if set then single-step interrupt will
occur after the next instruction.

Sign Flag (SF) - set if the most significant bit of the result
IS set.

Zero Flag (ZF) - set if the result is zero.
Next Page

o Auxiliary carry Flag (AF) - set if there was a carry from
or borrow to bits 0-3 in the AL register.

o Parity Flag (PF) - set if parity (the number of "1" bits) In
the low-order byte of the result is even.

o Carry Flag (CF) - set if there was a carry from or borrow
to the most significant bit during last result calculation.

Addressing Modes

Implied - the data value/data address is implicitly
associated with the instruction.

Register - references the data in a register or in a register
pair.

Immediate - the data is provided in the instruction.

Direct - the instruction operand specifies the memory
address where data is located.

Register indirect - instruction specifies a register
containing an address, where data is located. This
addressing mode works with SI, DI, BX and BP registers.

Based :- 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP), the resulting value

IS a pointer to location where data resides.
Next Page

e Indexed :- 8-bit or 16-bit instruction operand is added to
the contents of an index register (Sl or DI), the resulting
value is a pointer to location where data resides.

« Based Indexed :- the contents of a base register (BX or
BP) is added to the contents of an index register (Sl or DI),
the resulting value is a pointer to location where data
resides.

« Based Indexed with displacement :- 8-bit or 16-bit
Instruction operand is added to the contents of a base
register (BX or BP) and index register (Sl or Dl), the
resulting value Is a pointer to location where data resides.

Memory

* Program, data and stack memories occupy the same
memory space. As the most of the processor instructions
use 16-bit pointers the processor can effectively address
only 64 KB of memory.

e To access memory outside of 64 KB the CPU uses special
segment registers to specify where the code, stack and data
64 KB segments are positioned within 1 MB of memory
(see the "Registers" section below).

» 16-bit pointers and data are stored as:
address: low-order byte
address+1: high-order byte

Next Page

o 32-bit addresses are stored in "'segment: offset" format as:
address: low-order byte of segment
address+1: high-order byte of segment
address+2: low-order byte of offset
address+3: high-order byte of offset

* Physical memory address pointed by segment: offset pair

IS calculated as:
o address = (<segment> * 16) + <offset>

Next Page

 Program memory - program can be located anywhere in
memory. Jump and call instructions can be used for short
jumps within currently selected 64 KB code segment, as
well as for far jumps anywhere within 1 MB of memory.

 All conditional jump instructions can be used to jump
within approximately +127 to -127 bytes from current
Instruction.

e Data memory - the processor can access data in any one
out of 4 available segments, which limits the size of
accessible memory to 256 KB (if all four segments point to
different 64 KB blocks).

Next Page

» Accessing data from the Data, Code, Stack or Extra
segments can be usually done by prefixing instructions
with the DS:, CS:, SS: or ES: (some registers and
Instructions by default may use the ES or SS segments
Instead of DS segment).

 Word data can be located at odd or even byte boundaries.
The processor uses two memory accesses to read 16-bit
word located at odd byte boundaries. Reading word data
from even byte boundaries requires only one memory
access.

Next Page

o Stack memory can be placed anywhere in memory. The
stack can be located at odd memory addresses, but it is not
recommended for performance reasons (see "Data
Memory" above).

Reserved locations:

e (0000h - O3FFh are reserved for interrupt vectors. Each
Interrupt vector Is a 32-bit pointer in format segment:
offset.

 FFFFOh - FFFFFh - after RESET the processor always
starts program execution at the FFFFOh address.

Interrupts

The processor has the following interrupts:

INTR is a maskable hardware interrupt. The interrupt can
be enabled/disabled using STI/CLI instructions or using
more complicated method of updating the FLAGS register
with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS
register into stack, disables further interrupts, fetches from
the bus one byte representing interrupt type, and jumps to
Interrupt processing routine address of which is stored in
location 4 * <interrupt type>. Interrupt processing routine
should return with the IRET instruction.

Next Page

NMI is a non-maskable interrupt. Interrupt Is processed in
the same way as the INTR interrupt. Interrupt type of the
NMI is 2, 1.e. the address of the NMI processing routine is
stored in location 0008h. This interrupt has higher priority
then the maskable interrupt.

Software interrupts can be caused by:

INT instruction - breakpoint interrupt. This is a type 3
Interrupt.

INT <interrupt number> instruction - any one interrupt
from available 256 interrupts.

INTO instruction - interrupt on overflow
Next Page

» Single-step interrupt - generated if the TF flag Is set. This
Is a type 1 interrupt. When the CPU processes this
Interrupt it clears TF flag before calling the interrupt
processing routine.

* Processor exceptions: Divide Error (Type 0), Unused
Opcode (type 6) and Escape opcode (type 7).

« Software interrupt processing is the same as for the
hardware interrupts.

Minimum Mode 8086 System

* [na minimum mode 8086 system, the microprocessor
8086 Is operated in minimum mode by strapping Its
MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the

microprocessor chip itself. There is a single
microprocessor in the minimum mode system.

« The remaining components in the system are latches,
transreceivers, clock generator, memory and 1/O devices.
Some type of chip selection logic may be required for
selecting memory or 1/O devices, depending upon the
address map of the system.

Latches are generally buffered output D-type flip-flops like
74L.S373 or 8282. They are used for separating the valid
address from the multiplexed address/data signals and are
controlled by the ALE signal generated by 8086.

Transreceivers are the bidirectional buffers and some times
they are called as data amplifiers. They are required to
separate the valid data from the time multiplexed
address/data signals.

They are controlled by two signals namely, DEN and
DT/R.

 The DEN signal indicates the direction of data, i.e. from or
to the processor. The system contains memory for the
monitor and users program storage.

e Usually, EPROM are used for monitor storage, while

RAM for users program storage. A system may contain 1/O
devices.

* The clock generator generates the clock from the crystal
oscillator and then shapes it and divides to make it more
precise so that it can be used as an accurate timing
reference for the system.

* The clock generator also synchronizes some external signal
with the system clock. The general system organisation is
as shown in below fig.

[t has 20 address lines and 16 data lines, the 8086 CPU
requires three octal address latches and two octal data
buffers for the complete address and data separation.

e The working of the minimum mode configuration system
can be better described in terms of the timing diagrams
rather than qualitatively describing the operations.

» The opcode fetch and read cycles are similar. Hence the
timing diagram can be categorized in two parts, the first is
the timing diagram for read cycle and the second is the
timing diagram for write cycle.

« The read cycle begins in T, with the assertion of address
latch enable (ALE) signal and also M / 10 signal. During
the negative going edge of this signal, the valid address is
latched on the local bus.

The BHE and KO signals address low, high or both bytes.
From T, to T, , the M/1O signal indicates a memory or 1/O
operation.

At T,, the address Is removed from the local bus and Is
sent to the output. The bus Is then tristated. The read (RD)
control signal Is also activated in T,.

The read (RD) signal causes the address device to enable
Its data bus drivers. After RD goes low, the valid data is
available on the data bus.

The addressed device will drive the READY line high.
When the processor returns the read signal to high level,
the addressed device will again tristate its bus drivers.

A write cycle also begins with the assertion of ALE and
the emission of the address. The M/IO signal is again
asserted to indicate a memory or 1/O operation. In T,, after
sending the address in T,, the processor sends the data to
be written to the addressed location.

The data remains on the bus until middle of T, state. The
WR becomes active at the beginning of T, (unlike RD is
somewhat delayed in T, to provide time for floating).

The BHE and A, signals are used to select the proper byte
or bytes of memory or 1/0O word to be read or write.

The M/10, RD and WR signals indicate the type of data
transfer as specified in table below.

/ RD WR Transfer Type
0 0 1 | /O read

0 1 0 1/0 write

1 0 1 Memory read
1 1 0 Memory write

Data Transfer table

T T, T T T,
ADD / STATUS XBHE A X s,-s, X
ADD / DATA Mis = A for data in Di—D, Jjg

RD

B \ /

Read Cycle Timing Diagram for Minimum Mode

Clk |
ALE / \
ADD / STATUS XB'&EQ - A16>< S7— S5 ><
ADD/DATA | Aj—-A, | Valid data D - D, X

WR \ /

DT/EJ _

Write Cycle Timing Diagram for Minimum Mode

* Hold Response sequence: The HOLD pin is checked at
leading edge of each clock pulse. If it Is received active by
the processor before T, of the previous cycle or during T,
state of the current cycle, the CPU activates HLDA in the
next clock cycle and for succeeding bus cycles, the bus
will be given to another requesting master.

« The control of the bus Is not regained by the processor
until the requesting master does not drop the HOLD pin
low. When the request is dropped by the requesting master,
the HLDA is dropped by the processor at the trailing edge
of the next clock.

Clk |

HOLD

HLDA / \—

Bus Request and Bus Grant Timings in Minimum Mode System

Maximum Mode 8086 System

In the maximum mode, the 8086 Is operated by strapping
the MN/MX pin to ground.

In this mode, the processor derives the status signal S,, S,
S,- Another chip called bus controller derives the control
signal using this status information .

In the maximum mode, there may be more than one
microprocessor in the system configuration.

The components in the system are same as in the minimum
mode system.

« The basic function of the bus controller chip 1C8288, is to
derive control signals like RD and WR (for memory and
1/O devices), DEN, DT/R, ALE etc. using the information
by the processor on the status lines.

« The bus controller chip has input lines S,, S,, S, and CLK.
These inputs to 8288 are driven by CPU.

* It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,
AMWC, IORC, IOWC and AIOWC. The AEN, IOB and
CEN pins are specially useful for multiprocessor systems.

 AEN and 10B are generally grounded. CEN pin is usually
tied to +5V. The significance of the MCE/PDEN output
depends upon the status of the 10B pin.

e [fIOB is grounded, it acts as master cascade enable to
control cascade 8259A, else it acts as peripheral data
enable used in the multiple bus configurations.

* [INTA pin used to issue two interrupt acknowledge pulses
to the interrupt controller or to an interrupting device.

IORC, IOWC are I/O read command and 1/O write
command signals respectively . These signals enable an 10
Interface to read or write the data from or to the address
port.

The MRDC, MWTC are memory read command and
memory write command signals respectively and may be
used as memory read or write signals.

All these command signals instructs the memory to accept
or send data from or to the bus.

For both of these write command signals, the advanced
signals namely AIOWC and AMWTC are available.

They also serve the same purpose, but are activated one
clock cycle earlier than the IOWC and MWTC signals

respectively.

The maximum mode system timing diagrams are divided
In two portions as read (input) and write (output) timing
diagrams.

The address/data and address/status timings are similar to
the minimum mode.

ALE is asserted In T, just like minimum mode. The only
difference lies in the status signal used and the available
control and advanced command signals.

Reset

Clk

Generaton

JCIk DEN [—
— »S, DT/R ' Control bus .
81: 8288 IORC
< IOWTC !
2 _
AN MWTC
»Reset §0 '|A\CI)E|I3\| —
. SH CEN_ALE MRDC !
»Clk <
»Ready 2 —+5V l
8086 —— |
ADg-AD 5 \: Address bus
Ass-Are Latches 5
DT/R
v BHE Ay
4\ DIR l l \ 4 \ 4 A 4 A 4
/) ICE)Daft]:':l C3S0, CSO,_ 1\/?\/_% CS WR RD
T\ 1T
Data bus

Maximum Mode 8086 System.

» Here the only difference between in timing diagram
between minimum mode and maximum mode Is the status
signals used and the available control and advanced
command signals.

R, Sy, S, are set at the beginning of bus cycle.8288 bus
controller will output a pulse as on the ALE and apply a
required signal to its DT / R pin during T,.

e InT,, 8288 will set DEN=1 thus enabling transceivers, and
for an input it will activate MRDC or IORC. These signals
are activated until T,. For an output, the AMWC or
AIOWC is activated from T, to T, and MWTC or IOWC is
activated from T, to T,

« The status bit S, to S, remains active until T, and become
passive during T, and T,.

o If reader input is not activated before T, wait state will be
Inserted between T, and T,.

 Timings for RQ/ GT Signals : The request/grant response
sequence contains a series of three pulses. The
request/grant pins are checked at each rising pulse of clock
Input.

* When arequest is detected and if the condition for HOLD
request are satisfied, the processor issues a grant pulse over
the RQ/GT pin immediately during T, (current) or T,
(next) state.

* When the requesting master receives this pulse, it accepts
the control of the bus, it sends a release pulse to the
processor using RQ/GT pin.

< One bus cycle —
T, | T, | T, | T, | T, |
Clk — —
S,- S, Active ><_____|_r]{i_C_'§i__/_e_ >< Active
Add/Status > < ﬁ, Alg - A16 X 87 - 83 > ______________________
Add/Data ... < Ags = Ag > < D, — D, > --------------
MRDC \ /

DT/R \ /
e / \

Memory Read Timing in Maximum Mode

One bus cycle -

A

T T, T Tl T
Clk — —
ALE J \
5, Active N___tnactive }__ ctiv
ADD/STATUS X XBHE) S,-S, e
ADDIDATA —<AiA X DataoutDg-D,)
AMWC or AIOWC \ /
MWTC or IOWC
\ /
DT/R high

- \ /

Memory Write Timing in Maximum mode.

Clk

RQ/GT:

Another master CPU grant bus Master releases bus
request bus access

RQ/GT Timings in Maximum Mode.

ARCHITECTURE
OF
MICROPROCESSORS

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Contents

¢ General definitions
» Overview of 8085 microprocessor
¢ Overview of 8086 microprocessor

¢ Signals and pins of 8086 microprocessor

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Overview of
8085 microprocessor

» 8085 Architecture

e Pin Diagram

* Functional Block Diagram

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Pin Diagram of 8085

X, *orn] 1 40 > Vee ity
X, g i 39 > HOLD | —pMA
RESET our 1 3 38 > HLDA |
L : sop |4 37 |[Egarh (A ASCOUE)
Serial i/p, o/p signals Gt SRl 36 »RESET IN

TRAP 1 6 35 » READY A
RST754 |7 34 Hes !
RST 65— 8 AR
RST 5.5¢— 8085 A 22 —— rD
INTR «— 49 31 — wr
INTA *—7 11
DA 30 —t ;AOLE
AD; «—— 13 zz ey AL
AD; «— 14 27 [Aus
AD; <«— 15 26 > Agp
AD, <«— 46 25 > Ap
AD; «—— 44 24 — Ay
AD, +— 18 23 > A
AD, 19 22— A
Vs +«— 20 21 e

M. Krishna Kumar

MAM/M7/MKK18/V1/2004

Signal Groups of 8085

tSV — GND
XTAL ‘
X, X, Vee Iss
1
SID S, ° High ordel>dress bus
. SOD 4 Ag
TRAP 3 AD Multiplexed address / data bus
RESET 7.5 > 7
RESET 6.5 > AD,
RESET 5.5 > »ALE
INTR » > Sl
READY g S - v
HOLD > 10 /M
" RESET IN e
HLDA <« RD
INTA * l l WR
REST OUT CLK OUT

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

RES RES RES

TRAP SID

BUS

INTA SIO
T SNE G5 SR s l
INTR
INTERRUPT CONTROL SERIAL 1/0 CONTROL
II 4 s BITINTERNAL £ II
DATA BUS
% INSTRUCTION ¢
ACCUMULATOR TEMP REG (8) REGISTER (5 MULTIPLXER
\ 4
® R| W (8)
4 E TEMP . REG
4 cl B REG (8) C REG (8)
FLAG <
(5) D REG (8) E REG (8)
\ 4 S
FLIP FLOPS INSTRUCTION H REG (L REG (8)
ARITHEMETIC 7y DECODER € E 8)
|| ®) £ ENCODING g | PROGRAM COUNTER (16)
1SV 7y [TNCREAMENT/ DECREAMENT ADDRESS
] LATCH (16)
—>GND T
X TIMING AND CONTROL J\/ \1
—PICLK
ADDRESS BUFFER DATA / ADDRESS
<—GEN (8) BUFFER
3 CONTROL STATUS DMA (8)
A
CLKl T l L l l l l T lRESET IN l A J.GL II
15 -
OUT ° READY RDWR ALE %0 Si 10/ M HOLD HLDA RESET OUT ADDRESS BUS AD, - AD}”ADDRESS / BUFFER

Flag Registers

Dy D; D, D, D, D, D,

S V/ AC P CYy

General Purpose Registers

INDIVIDUAL

COMBININATON

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Overview of
8086 Microprocessor

» 8086 Architecture
e Pin Diagram

 Functional Block Diagram

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

GENERAL
REGISTERS

AH AL
BH BL
CH CL
DH DL
SP
BP

SI

ALU DATA BUS f L

ﬂl
I

TEMPORARY REGISTERS

A

l

ALU

A

FLAGS

16 BITS

EU
CONTRO
SYSTEM

&
l

EXECUTION UNIT (EU)

2
(20)
BITS
DATA BLIS
ES
CS
SS

— bs

IP

INSTRUCTION QUEUE

1 2 3 4 5 6

BUS INTERFACE UNIT (BIU)

ADDRE,%S BUS
a0 v Y

BUS

CONTRO
L LOGIC

mgwﬁa o\ SEMco

Pin Diagram of 8086

GND |1 40 [> Ve
ADy, 1, 39 [" AD,
ADE 2T 3 38 [t e ALY
AD 2T 4 37 [A s,
AD,; 5 36 > A/ Ss
Al 6 35 [" A/Se £l
AD SFgF=awr T 34 — "BHE/S,
AD, <+—8 8086 33 ["MN/MX
ADT L ma 9 T L WY
iﬁz) u CPU 31 —— RQ/GT, (HOLD)
AD=FasS 5 12 30 - &/GE(HLDA)
AD;, < 3 29 > LOCK (WR) e -
e 28 o — s, (M/10)
? +— 14 27 [> s, (DT/R)
gl s em
16 >QS, (ALE)
NMI «— 24 —> QS, (INTA)
e e n EEEE
READY
GND <+—120 21 AT

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 10

Ve GND

A, -Al5, A, /S, —A,/S,
INTR > >
INTA . ADDRESS / DATA BUS
INTERRUPT
INTERFACE
TEST > > D, - Dy,
NMI > 8086 » ALE
- MPU —
RESET > > BHE/S,
MEMORY - M/I0
¥ e d nia 1/0 " DT/R
CONTROLS > RD
A INTERFACE oy
WR
VCC > ——
DEN
.| MODE
s SELECT # READY
MN / MX

CLK i

Signal Description of 8086

e The Microprocessor 8086 is a 16-bit CPU available in
different clock rates and packaged in a 40 pin CERDIP or
plastic package.

» The 8086 operates in single processor or multiprocessor
configuration to achieve high performance. The pins serve a
particular function in minimum mode (single processor mode)
and other function in maximum mode configuration
(multiprocessor mode).

« The 8086 signals can be categorised in three groups. The first
are the signal having common functions in minimum as well
as maximum mode.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 12

« The second are the signals which have special functions for
minimum mode and third are the signals having special
functions for maximum mode.

e The following signal descriptions are common for both modes.

 AD,;~AD, : These are the time multiplexed memory 1/O
address and data lines.

e Address remains on the lines during T, state, while the data is
available on the data bus during T,, T,, T, and T,.

These lines are active high and float to a tristate during
Interrupt acknowledge and local bus hold acknowledge cycles.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 13

* A,o/SeAcs/SsA1/S5A /S5 - These are the time multiplexed
address and status lines.

« During T, these are the most significant address lines for
memory operations.

« During I/O operations, these lines are low. During memory or
|/O operations, status information is available on those lines
for T,, T, T, and T,.

e The status of the interrupt enable flag bit is updated at the
beginning of each clock cycle.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 14

e The S, and S; combinedly indicate which segment register is
presently being used for memory accesses as in below fig.

» These lines float to tri-state off during the local bus hold
acknowledge. The status line S Is always low .

e The address bit are separated from the status bit using latches
controlled by the ALE signal.

7]
N

3 Indication
Alternate Data
Stack

Code or none
Data

—— O D
—_— = O | N

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

« BHE/S, : The bus high enable is used to indicate the transfer
of data over the higher order (D,c-Dg) data bus as shown in
table. It goes low for the data transfer over D,.-Dg and is used
to derive chip selects of odd address memory bank or
peripherals. BHE is low during T, for read, write and interrupt
acknowledge cycles, whenever a byte iIs to be transferred on
higher byte of data bus. The status information is available
during T,, T; and T,. The signal is active low and tristated
during hold. It is low during T, for the first pulse of the
Interrupt acknowledge cycle.

BHE A, Indication
0 Whole word
0 1 Upper byte from or to even address
1 0 Lower byte from or to even address
1 1 None

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 16

e RD - Read : This signal on low indicates the peripheral that
the processor Is performing s memory or 1/O read operation.
RD is active low and shows the state for T,, T, T,, of any read
cycle. The signal remains tristated during the hold
acknowledge.

« READY : This is the acknowledgement from the slow device
or memory that they have completed the data transfer. The
signal made available by the devices is synchronized by the
8284A clock generator to provide ready input to the 8086. the
signal is active high.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 17

o INTR-Interrupt Request : This Is a triggered input. This is
sampled during the last clock cycles of each instruction to
determine the availability of the request. If any interrupt
request is pending, the processor enters the interrupt
acknowledge cycle.

e This can be internally masked by resulting the interrupt enable
flag. This signal is active high and internally synchronized.

« TEST : This input is examined by a ‘WAIT’ instruction. If the
TEST pin goes low, execution will continue, else the processor
remains in an idle state. The input is synchronized internally
during each clock cycle on leading edge of clock.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 18

NMI- Nonmaskable interrupt : This Is an edge triggered
Input which causes a Type 2 interrupt. The NMI is not
maskable internally by software. A transition from low to high
Initiates the interrupt response at the end of the current
Instruction. This input is internally synchronized.

RESET : This input causes the processor to terminate the
current activity and start execution from FFFOH. The signal is
active high and must be active for at least four clock cycles. It
restarts execution when the RESET returns low. RESET is
also internally synchronized.

Vce +5V power supply for the operation of the internal circuit.
GND ground for internal circuit.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 19

* CLK- Clock Input : The clock input provides the basic timing
for processor operation and bus control activity. Its an
asymmetric square wave with 33% duty cycle.

« MN/MX : The logic level at this pin decides whether the
processor Is to operate in either minimum or maximum mode.

e The following pin functions are for the minimum mode
operation of 8086.

* M/IO — Memory/1O : This is a status line logically equivalent
to S, in maximum mode. When it is low, it indicates the CPU
IS havmg an 1/O operation, and when it is high, it indicates that
the CPU Is having a memory operation. This line becomes
active high in the previous T, and remains active till final T, of
the current cycle. It is trlstated during local bus “hold
acknowledge “.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 20

e« INTA — Interrupt Acknowledge : This signal is used as a
read strobe for interrupt acknowledge cycles. i.e. when it goes
low, the processor has accepted the interrupt.

« ALE — Address Latch Enable : This output signal indicates
the availability of the valid address on the address/data lines,
and Is connected to latch enable input of latches. This signal is
active high and Is never tristated.

« DT/R — Data Transmit/Receive: This output is used to decide
the direction of data flow through the transreceivers
(bidirectional buffers). When the processor sends out data, this
signal is high and when the processor is receiving data, this
signal is low.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 21

« DEN - Data Enable : This signal indicates the availability of
valid data over the address/data lines. It is used to enable the
transreceivers (bidirectional buffers) to separate the data from
the multiplexed address/data signal. It is active from the
middle of T, until the middle of T,. This is tristated during
hold acknowledge’ cycle.

« HOLD, HLDA- Acknowledge : When the HOLD line goes
high, it indicates to the processor that another master Is
requesting the bus access.

* The processor, after receiving the HOLD request, issues the
hold acknowledge signal on HLDA pin, in the middle of the
next clock cycle after completing the current bus cycle.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 22

e Atthe same time, the processor floats the local bus and
control lines. When the processor detects the HOLD line
low, it lowers the HLDA signal. HOLD is an asynchronous
Input, and Is should be externally synchronized.

o If the DMA request is made while the CPU is performing a
memory or 1/O cycle, it will release the local bus during T,
provided :

1. The request occurs on or before T, state of the current cycle.

2. The current cycle is not operating over the lower byte of a
word.

3. The current cycle is not the first acknowledge of an interrupt

acknowledge sequence.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

23

A Lock instruction is not being executed.

 The following pin function are applicable for maximum

mode operation of 8086.

e S,,8,, S,— Status Lines : These are the status lines which
reflect the type of operation, being carried out by the
processor. These become activity during T, of the previous
cycle and active during T, and T, of the current bus cycles.

S, S; S,

Indication

0 0

— O S D
— e OO e m © D
— O O = O

Interrupt Acknowledge
Read 1I/0 port

Write I/O port

Halt

Code Access
Read memory

Write memory
Passive

M. Krishna Kumar MAM/M7/MKK18/V1/2004 24

« LOCK : This output pin indicates that other system bus master
will be prevented from gaining the system bus, while the
LOCK signal is low.

 The LOCK signal is activated by the ‘LOCK” prefix
Instruction and remains active until the completion of the next
Instruction. When the CPU is executing a critical instruction
which requires the system bus, the LOCK prefix instruction
ensures that other processors connected in the system will not
gain the control of the bus.

e The 8086, while executing the prefixed instruction, asserts the
bus lock signal output, which may be connected to an external
bus controller.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 25

QS,, QS,— Queue Status: These lines give information about
the status of the code-prefetch queue. These are active during
the CLK cycle after while the queue operation is performed.

This modification in a simple fetch and execute architecture of
a conventional microprocessor offers an added advantage of
pipelined processing of the instructions.

The 8086 architecture has 6-byte instruction prefetch queue.
Thus even the largest (6-bytes) instruction can be prefetched
from the memory and stored in the prefetch. This results in a
faster execution of the instructions.

In 8085 an instruction is fetched, decoded and executed and
only after the execution of this instruction, the next one Is
fetched.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 26

o By prefetching the instruction, there is a considerable speeding
up in instruction execution in 8086. This is known as
Instruction pipelining.

» At the starting the CS:IP Is loaded with the required address
from which the execution is to be started. Initially, the queue
will be empty an the microprocessor starts a fetch operation to
bring one byte (the first byte) of instruction code, if the CS:IP
address is odd or two bytes at a time, if the CS:IP address Is
even.

« The first byte i1s a complete opcode in case of some instruction
(one byte opcode instruction) and Is a part of opcode, In case
of some instructions (two byte opcode instructions), the
remaining part of code lie in second byte.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 27

« But the first byte of an instruction Is an opcode. When the first
byte from the queue goes for decoding and interpretation, one
byte in the queue becomes empty and subsequently the queue
IS updated.

e The microprocessor does not perform the next fetch operation
till at least two bytes of instruction queue are emptied. The
Instruction execution cycle is never broken for fetch operation.
After decoding the first byte, the decoding circuit decides
whether the instruction is of single opcode byte or double
opcode byte.

 Ifitis single opcode byte, the next bytes are treated as data
bytes depending upon the decoded instruction length,
otherwise, the next byte in the queue is treated as the second
byte of the instruction opcode.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 28

« The second byte is then decoded in continuation with the first
byte to decide the instruction length and the number of
subsequent bytes to be treated as instruction data.

» The queue Is updated after every byte is read from the queue
but the fetch cycle is initiated by BIU only if at least two bytes
of the queue are empty and the EU may be concurrently
executing the fetched instructions.

« The next byte after the instruction is completed Is again the
first opcode byte of the next instruction. A similar procedure is
repeated till the complete execution of the program.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 29

» The fetch operation of the next instruction is overlapped with
the execution of the current instruction. As in the architecture,
there are two separate units, namely Execution unit and Bus

Interface unit.

» While the execution unit Is busy In executing an instruction,
after it is completely decoded, the bus interface unit may be
fetching the bytes of the next instruction from memory,
depending upon the queue status.

QsS, QS, Indication
0 0 No operation
0 1 First byte of the opcode from the queue
1 0 Empty queue
1 1 Subsequent byte from the queue

M. Krishna Kumar

MAM/M7/MKK18/V1/2004

30

« RQ/GT, RQ/GT, — Request/Grant : These pins are used
by the other local bus master in maximum mode, to force the
processor to release the local bus at the end of the processor
current bus cycle.

e Each of the pin is bidirectional with RQ/GT, having higher
priority than RQ/GT,.

« RQ/GT pins have internal pull-up resistors and may be left
unconnected.

 Request/Grant sequence is as follows:

1. A pulse of one clock wide from another bus master requests
the bus access to 8086.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 31

During T,(current) or T,(next) clock cycle, a pulse one clock
wide from 8086 to the requesting master, indicates that the
8086 has allowed the local bus to float and that it will enter
the “hold acknowledge’ state at next cycle. The CPU bus
Interface unit is likely to be disconnected from the local bus
of the system.

A one clock wide pulse from the another master indicates to
the 8086 that the hold request is about to end and the 8086
may regain control of the local bus at the next clock cycle.
Thus each master to master exchange of the local bus is a
sequence of 3 pulses. There must be at least one dead clock
cycle after each bus exchange.

The request and grant pulses are active low.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 32

» For the bus request those are received while 8086 Is
performing memory or 1/O cycle, the granting of the bus is
governed by the rules as in case of HOLD and HLDA in
minimum mode.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

33

General Bus Operation

 The 8086 has a combined address and data bus commonly
referred as a time multiplexed address and data bus.

« The main reason behind multiplexing address and data over
the same pins is the maximum utilisation of processor pins and
It facilitates the use of 40 pin standard DIP package.

e The bus can be demultiplexed using a few latches and
transreceivers, when ever required.

« Basically, all the processor bus cycles consist of at least four
clock cycles. These are referredtoas T, T,, T, T,. The
address Is transmitted by the processor during T,. It Is present
on the bus only for one cycle.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 34

e During T,, 1.e. the next cycle, the bus Is tristated for changing
the direction of bus for the following data read cycle. The data
transfer takes place during T, T,.

e In case, an address device is slow ‘NOT READY status the
walit status T,, are inserted between T, and T,. These clock
states during walit period are called idle states (T;), wait states
(T,) or inactive states. The processor used these cycles for
Internal housekeeping.

e The address latch enable (ALE) signal is emitted during T, by
the processor (minimum mode) or the bus controller e
(maximum mode) depending upon the status of the MN/MX
Input.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 35

* The negative edge of this ALE pulse is used to separate the
address and the data or status information. In maximum mode,
the status lines S,, S, and S, are used to indicate the type of
operation.

e Status bits S, to S, are multiplexed with higher order address
bits and the BHE signal. Address is valid during T, while
status bits S, to S, are valid during T, through T,.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 36

< Memory read cycle >le Memory write cycle____,)]
i R ek QLA BN A o | (1N et o] B A el Ikl Tab ikl

CLK

AM T m

S /7] \ /777 \

- Ajo-Agg S3-S; Ajg-Ass S;-S;
Add/stat (X P S X X
BHE Bus reserve BHE
Add/data >< X forDataIn X L¥E X DataOut D, -D,)<
Ag-Ays | D,s-D, Ag-Ays D,s-D,
RD/INTA \ /
5 Ready
READY \\\\ / Ready g \\\\
: @

DT/R : Walt Wait

DEN—— / /

WR §<—Mem0ry access time —“
General Bus Operation Cycle in Maximum Mode
M. Krishna Kumar MAM/M7/MKK18/V1/2004 87

8085 Microprocessor

Contents

+*General definitions

**Overview of 8085 microprocessor

**Overview of 8086 microprocessor

+»+Signals and pins of 8086 microprocessor

The salient features of 8085 up are:

It is a 8 bit microprocessor.

It is manufactured with N-MOS technology.

It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB)
memory locations through Ag-Ajs.

The first 8 lines of address bus and 8 lines of data bus are multiplexed ADy— AD».
Data bus is a group of 8 lines Dy — D5.

It supports external interrupt request.

A 16 bit program counter (PC)

A 16 bit stack pointer (SP)

Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

It requires a signal +5V power supply and operates at 3.2 MHZ single phase
clock.

It is enclosed with 40 pins DIP (Dual in line package).

Overview of 8085 microprocessor

> 8085 Architecture

Pin Diagram

Functional Block Diagram

P Vee

X; “— 40
X, ¢, 39 [HOLD }DM A
RESET our <4— 3 38 [HLDA
Serial i/p, o/p signals :?DD : ;75 — CLK(OUT);m
TRAP *— 6 35 —» READY B
RST7.5¢— 7 34 » 10/ M
RST 6.5¢— 8§ ——— S,
et 8085A [o
INTR <4— 9 31 —» WR
INTA <«—
AD, €— 2 30 ——» ALE
29 —» SO
AD;, <4+— 13 28 > As
AD: 14 27 [Au
AD; <4¢— 15 26 —» As
ADs <4— 15 25 —P» An
ADs 4— 17 24 —» An
AD;, 4— 3 23 [P A
AD, 9 2 | p A
Vss 4_ 20 21 _> AS
Pin Diagram of 8085
+5V —GND
XTAIM
X1 X, Ve Vs
SID 5 Ats
2 High order Agdress bus
Ag
‘ SOD 4
TRAP >
RESET 7.5 > AD7<:::>
RESET 6.5 > ADy
RESET 5.5 > —>ALE
INTR > — S
READY > — Sy
HOLD > > 10/ M
» RESET IN _
- »
HLDA «——— RD
—’_
INTA «—— WR

v

REST OUT

v

CLK OUT

Signal Groups of 8085

RES RES RES

t™

INT

INTERRUPT CONTROL

SID

1

SERIAL I/0

11

8 BIT INTERNAL

BATA-BLS

11

fSV
GND

Xy

pog

INSTRUCTIO |4} >
ACCUMULATQ | TEMP (8) NREGISTER MULTIPLXER
v
®) R w (8)
y'y E| TEmP.
P G| B REG (§) C REG (
FLAG < .
y | s|PREG (9 & REG (8
E
FLIP INSTRUCTIO L| M REG L REG (8
ARITHEMETIC N DECODER |4
LOGIC UNIT (T AND g STACK POINTER (16)|
® — A TN T| PROGRAM COUNTER (
l
X |, [TNCREAMENT7 DECREAMENT
ADDRESS LLATCH (16)
TIMING AND CONTROL
g;‘; ADDRESS BUFFER DATA / ADDRESS
(8) BUFFER
ONTRO STATUS (|
ST T
RESET AgsS
READY R WRAL S St 10/ M HOLDHLDA RESET ADDRESS AD; - AD; ADDRESS/

Block Diagram

BUFFER BUS

D~

Flag Registers

D« Ds< D. D- D, D, Da

V4 AC P CY

General Purpose Registers

INDIVIDUAL B C D E. H L
COMBININATON
B&C D & E H&L
Memory

Program, data and stack memories occupy the same memory space. The total
addressable memory size is 64 KB.

Program memory - program can be located anywhere in memory. Jump, branch
and call instructions use 16-bit addresses, i.e. they can be used to jump/branch
anywhere within 64 KB. All jump/branch instructions use absolute addressing.
Data memory - the processor always uses 16-bit addresses so that data can be
placed anywhere.

Stack memory is limited only by the size of memory. Stack grows downward.
First 64 bytes in a zero memory page should be reserved for vectors used by RST
instructions.

Interrupts

The processor has 5 interrupts. They are presented below in the order of their
priority (from lowest to highest):

INTR is maskable 8080A compatible interrupt. When the interrupt occurs the
processor fetches from the bus one instruction, usually one of these instructions:
One of the 8 RST instructions (RST, - RST7). The processor saves current
program counter into stack and branches to memory location N * 8 (where N
is a 3-bit number from 0 to 7 supplied with the RST instruction).

* CALL instruction (3 byte instruction). The processor calls the subroutine, address
of which is specified in the second and third bytes of the instruction.

» RSTS5.5 is a maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 2CH
(hexadecimal) address.

* RST6.5 is a maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 34H
(hexadecimal) address.

« RST7.5 is a maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 3CH
(hexadecimal) address.

* TRAP is a non-maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 24H
(hexadecimal) address.

» All maskable interrupts can be enabled or disabled using EI and DI instructions.
RST 5.5, RST6.5 and RST7.5 interrupts can be enabled or disabled individually
using SIM instruction.

Reset Signals

* RESET IN: When this signal goes low, the program counter (PC) is set to Zero,
up is reset and resets the interrupt enable and HLDA flip-flops.

» The data and address buses and the control lines are 3-stated during RESET and
because of asynchronous nature of RESET, the processor internal registers and
flags may be altered by RESET with unpredictable results.

* RESET IN is a Schmitt-triggered input, allowing connection to an R-C network
for power-on RESET delay.

* Upon power-up, RESET IN must remain low for at least 10 ms after minimum
Vcce has been reached.

» For proper reset operation after the power — up duration, RESET IN should be
kept low a minimum of three clock periods.

» The CPU is held in the reset condition as long as RESET IN is applied. Typical
Power-on RESET RC values R1 = 75KQ, C1 = 1puF.

+ RESET OUT: This signal indicates that up is being reset. This signal can be used
to reset other devices. The signal is synchronized to the processor clock and lasts
an integral number of clock periods.

Serial communication Signal

« SID - Serial Input Data Line: The data on this line is loaded into accumulator bit
7 whenever a RIM instruction is executed.

* SOD - Serial Output Data Line: The SIM instruction loads the value of bit 7 of
the accumulator into SOD latch if bit 6 (SOE) of the accumulator is 1.

DMA Signals

HOLD: Indicates that another master is requesting the use of the address and data
buses. The CPU, upon receiving the hold request, will relinquish the use of the
bus as soon as the completion of the current bus transfer.

Internal processing can continue. The processor can regain the bus only after the
HOLD is removed.

When the HOLD is acknowledged, the Address, Data RD, WR and IO/M lines are
3-stated.

HLDA: Hold Acknowledge: Indicates that the CPU has received the HOLD
request and that it will relinquish the bus in the next clock cycle.

HLDA goes low after the Hold request is removed. The CPU takes the bus one
half-clock cycle after HLDA goes low.

READY: This signal Synchronizes the fast CPU and the slow memory,
peripherals.

If READY is high during a read or write cycle, it indicates that the memory or
peripheral is ready to send or receive data.

If READY is low, the CPU will wait an integral number of clock cycle for
READY to go high before completing the read or write cycle.

READY must conform to specified setup and hold times.

Registers

Accumulator or A register is an 8-bit register used for arithmetic, logic, I/O and
load/store operations.

Flag Register has five 1-bit flags.

Sign - set if the most significant bit of the result is set.

Zero - set if the result is zero.

Auxiliary carry - set if there was a carry out from bit 3 to bit 4 of the result.
Parity - set if the parity (the number of set bits in the result) is even.

Carry - set if there was a carry during addition, or borrow during
subtraction/comparison/rotation.

General Registers

8-bit B and 8-bit C registers can be used as one 16-bit BC register pair. When
used as a pair the C register contains low-order byte. Some instructions may use
BC register as a data pointer.

8-bit D and 8-bit E registers can be used as one 16-bit DE register pair. When
used as a pair the E register contains low-order byte. Some instructions may use
DE register as a data pointer.

8-bit H and 8-bit L registers can be used as one 16-bit HL register pair. When
used as a pair the L register contains low-order byte. HL register usually contains
a data pointer used to reference memory addresses.

» Stack pointer is a 16 bit register. This register is always
decremented/incremented by 2 during push and pop.
* Program counter is a 16-bit register.

Instruction Set

» 8085 instruction set consists of the following instructions:

» Data moving instructions.

* Arithmetic - add, subtract, increment and decrement.

* Logic - AND, OR, XOR and rotate.

* Control transfer - conditional, unconditional, call subroutine, return from
subroutine and restarts.

* Input/Output instructions.

» Other - setting/clearing flag bits, enabling/disabling interrupts, stack operations,
etc.

Addressing mode

* Register - references the data in a register or in a register pair.
Register indirect - instruction specifies register pair containing address, where
the data is located.
Direct, Immediate - 8 or 16-bit data.

8086 Microprocessor

eIt is a 16-bit up.

+8086 has a 20 bit address bus can access up to 220 memory locations (1 MB) .

*It can support up to 64K I/O ports.

*It provides 14, 16 -bit registers.

*It has multiplexed address and data bus ADy- AD;5s and Ajs— Ajo.

*It requires single phase clock with 33% duty cycle to provide internal timing.

8086 is designed to operate in two modes, Minimum and Maximum.

*It can prefetches upto 6 instruction bytes from memory and queues them in order to
speed up instruction execution.

oIt requires +5V power supply.

*A 40 pin dual in line package

Minimum and Maximum Modes:

*The minimum mode is selected by applying logic 1 to the MN / MX# input pin. This is a
single microprocessor configuration.

* The maximum mode is selected by applying logic 0 to the MN / MX# input pin. This is
a multi micro processors configuration.

Pin Diagram of 8086

GND 40 [Ve
AD,, +—1, 39 [> AD;
AD,;, 3 38 > Ay,S;
ADy, 4 37 > Ay /Sy
ADy, “—5 36 > A/ Ss
ADy 6 35 > Aw/Se L
AD, 7 34 »BHE / S,
AD;, <— 8 8086 13 ——>MNMX
w % CPU P —m
iﬁ w0 31 » RQ/GT, (HOLD)

- — >
ADj «— E 30— RQ/CT (gpa)

29 [LOCK (WR _

AD: 13 28 (_) >S5 (M/IO)
AD; «— 14 57 —> s, (DT/R)
AD; <«— 15 26 > S, (DEN)
ADy +— 46 25 ——>QS, (ALE)
NMI «— 5 24 — QS, (INTA)
INTR €— 13 23 |— » TEST
CLK 19 22— peapy
GND <+— 20 21 —

RESET

INTR

Vee GND

INTA

A 4

TEST

NMI

A 4

RESET

A 4

HOLD

A 4

HLDA <«

VCC

MN / MX

A 4

A0 - A15, A16/ S3 - A19/86

>

ADDRESS / DATA BUS
INTERRUPT
INTERFACE
Dy - Dys
8086 > ALE
MPU o
BHE / S,
- »
L » M/IO
MEMORY —
1/0 » DT/R
DMA CONTROLS RD
INTERFACE >
> WR
>
DEN
MODE
SELECT € READY
CLK

Signal Groups of 8086

1
1
1
AH AL .
! s
BH BL ! 5
CH CL ! (20)"
GENERAL DH DL ! BITS
REGISTERS !
sp :)
BP : 5
SI | BITS
DI :
A ! ES
! cs
! ss
Wi —
| ALUDATA | P)
16 BITS | 0
. BUS |8
, 6
TEMPORARY < . CONTR|.B
O O | oL [T
u u : S
1
1
EU !
ALU < CONTR :,OE INSTRUCTION
— <: 1] 2] 3|45 6T
T 8 BIT
1
|
FLAGS « : BUS INTERFACE UNIT (BIU)
L] EXECUTION UNIT(EU) |
Block Diagram of 8086

Internal Architecture of 8086

+8086 has two blocks BIU and EU.

*The BIU performs all bus operations such as instruction fetching, reading and writing
operands for memory and calculating the addresses of the memory operands. The
instruction bytes are transferred to the instruction queue.

*EU executes instructions from the instruction system byte queue.

*Both units operate asynchronously to give the 8086 an overlapping instruction fetch and
execution mechanism which is called as Pipelining. This results in efficient use of the
system bus and system performance.

*BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

*EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register,
Flag register.

*BUS INTERFACR UNIT:

« It provides a full 16 bit bidirectional data bus and 20 bit address bus.

*The bus interface unit is responsible for performing all external bus operations.
Specifically it has the following functions:

*Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and
Bus control.

*The BIU uses a mechanism known as an instruction stream queue to implement a
pipeline architecture.

*This queue permits prefetch of up to six bytes of instruction code. When ever the queue
of the BIU is not full, it has room for at least two more bytes and at the same time the EU
is not requesting it to read or write operands from memory, the BIU is free to look ahead
in the program by prefetching the next sequential instruction.

*These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the
BIU fetches two instruction bytes in a single memory cycle.

After a byte is loaded at the input end of the queue, it automatically shifts up through the
FIFO to the empty location nearest the output.

*The EU accesses the queue from the output end. It reads one instruction byte after the
other from the output of the queue. If the queue is full and the EU is not requesting
access to operand in memory.

*These intervals of no bus activity, which may occur between bus cycles are known as
Idle state.

«[f the BIU is already in the process of fetching an instruction when the EU request it to
read or write operands from memory or I/O, the BIU first completes the instruction fetch
bus cycle before initiating the operand read / write cycle.

*The BIU also contains a dedicated adder which is used to generate the 20bit physical
address that is output on the address bus. This address is formed by adding an appended
16 bit segment address and a 16 bit offset address.

*For example: The physical address of the next instruction to be fetched is formed by
combining the current contents of the code segment CS register and the current contents
of the instruction pointer IP register.

*The BIU is also responsible for generating bus control signals such as those for memory
read or write and I/O read or write.

*EXECUTION UNIT

The Execution unit is responsible for decoding and executing all instructions.

*The EU extracts instructions from the top of the queue in the BIU, decodes them,
generates operands if necessary, passes them to the BIU and requests it to perform the
read or write bys cycles to memory or I/O and perform the operation specified by the
instruction on the operands.

*During the execution of the instruction, the EU tests the status and control flags and
updates them based on the results of executing the instruction.

*If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted
to top of the queue.

*When the EU executes a branch or jump instruction, it transfers control to a location
corresponding to another set of sequential instructions.

*Whenever this happens, the BIU automatically resets the queue and then begins to fetch
instructions from this new location to refill the queue.

Signal Description of 8086

*The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged
in a 40 pin CERDIP or plastic package.

*The 8086 operates in single processor or multiprocessor configuration to achieve high
performance. The pins serve a particular function in minimum mode (single processor
mode) and other function in maximum mode configuration (multiprocessor mode).
*The 8086 signals can be categorised in three groups. The first are the signal having
common functions in minimum as well as maximum mode.

*The second are the signals which have special functions for minimum mode and third
are the signals having special functions for maximum mode.

*The following signal descriptions are common for both modes.

*AD;5-AD, : These are the time multiplexed memory I/O address and data lines.

* Address remains on the lines during T, state, while the data is available on the data bus
during T», Tz, T,, and Ty.

* These lines are active high and float to a tristate during interrupt acknowledge and local
bus hold acknowledge cycles.

*A19/S6,A18/S5,A17/S4,A16/S3 : These are the time multiplexed address and status lines.

* During T these are the most significant address lines for memory operations.

*During I/O operations, these lines are low. During memory or I/O operations, status
information is available on those lines for T,, T3, T, and T,.

* The status of the interrupt enable flag bit is updated at the beginning of each clock
cycle.

*The S4 and S; combinedly indicate which segment register is presently being used for
memory accesses as in below fig.

*These lines float to tri-state off during the local bus hold acknowledge. The status line S¢
is always low .

*The address bit are separated from the status bit using latches controlled by the ALE
signal.

S4 S; Indication
0 0 Alternate Data
0 1 Stack
1 0 Code or none
1 1 Data

*BHE/S; : The bus high enable is used to indicate the transfer of data over the higher
order (Dy5-Dg) data bus as shown in table. It goes low for the data transfer over D5-Dg
and is used to derive chip selects of odd address memory bank or peripherals. BHE is low
during T, for read, write and interrupt acknowledge cycles, whenever a byte is to be
transferred on higher byte of data bus. The status information is available during T,, T
and T,. The signal is active low and tristated during hold. It is low during T, for the first
pulse of the interrupt acknowledge cycle.

0 0 Whole word
0 1 Upper byte from or to even address
1 0 Lower byte from or to even address

*RD — Read : This signal on low indicates the peripheral that the processor is performing
s memory or I/O read operation. RD is active low and shows the state for T,, T3, T, of
any read cycle. The signal remains tristated during the hold acknowledge.

*READY : This is the acknowledgement from the slow device or memory that they have
completed the data transfer. The signal made available by the devices is synchronized by
the 8284 A clock generator to provide ready input to the 8086. the signal is active high.

*INTR-Interrupt Request : This is a triggered input. This is sampled during the last
clock cycles of each instruction to determine the availability of the request. If any
interrupt request is pending, the processor enters the interrupt acknowledge cycle.

*This can be internally masked by resulting the interrupt enable flag. This signal is active
high and internally synchronized.

*TEST : This input is examined by a ‘WAIT’ instruction. If the TEST pin goes low,
execution will continue, else the processor remains in an idle state. The input is
synchronized internally during each clock cycle on leading edge of clock.

*CLK- Clock Input : The clock input provides the basic timing for processor operation
and bus control activity. Its an asymmetric square wave with 33% duty cycle.

*MN/MX : The logic level at this pin decides whether the processor is to operate in either
minimum or maximum mode.

*The following pin functions are for the minimum mode operation of 8086.

*M/IO — Memory/IO : This is a status line logically equivalent to S, in maximum mode.
When it is low, it indicates the CPU is having an I/O operation, and when it is high, it
indicates that the CPU is having a memory operation. This line becomes active high in

the previous T4 and remains active till final T, of the current cycle. It is tristated during
local bus “hold acknowledge “.

*INTA — Interrupt Acknowledge : This signal is used as a read strobe for interrupt
acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

*ALE — Address Latch Enable : This output signal indicates the availability of the valid
address on the address/data lines, and is connected to latch enable input of latches. This
signal is active high and is never tristated.

*DT/R — Data Transmit/Receive: This output is used to decide the direction of data flow
through the transreceivers (bidirectional buffers). When the processor sends out data, this
signal is high and when the processor is receiving data, this signal is low.

*DEN — Data Enable : This signal indicates the availability of valid data over the
address/data lines. It is used to enable the transreceivers (bidirectional buffers) to
separate the data from the multiplexed address/data signal. It is active from the middle of
T, until the middle of Ty4. This is tristated during ‘ hold acknowledge’ cycle.

*HOLD, HLDA- Acknowledge : When the HOLD line goes high, it indicates to the
processor that another master is requesting the bus access.

*The processor, after receiving the HOLD request, issues the hold acknowledge signal on
HLDA pin, in the middle of the next clock cycle after completing the current bus cycle.

At the same time, the processor floats the local bus and control lines. When the
processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an
asynchronous input, and is should be externally synchronized.

*If the DMA request is made while the CPU is performing a memory or I/O cycle, it will
release the local bus during T, provided :

1.The request occurs on or before T, state of the current cycle.

2.The current cycle is not operating over the lower byte of a word.
3.The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

*The following pin function are applicable for maximum mode operation of 8086.

*S,, S1, Sg — Status Lines : These are the status lines which reflect the type of operation,
being carried out by the processor. These become activity during T, of the previous cycle
and active during T, and T, of the current bus cycles.

S, S¢S, Indication

0 o0 o Interrupt Acknowledge
0 0 1 Read 1/0O port

0 1 o0 Write 1/0 port

0 1 1 Halt

I o0 0 Code Access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive

*LOCK : This output pin indicates that other system bus master will be prevented from
gaining the system bus, while the LOCK signal is low.

*The LOCK signal is activated by the ‘LOCK’ prefix instruction and remains active until
the completion of the next instruction. When the CPU is executing a critical instruction
which requires the system bus, the LOCK prefix instruction ensures that other processors
connected in the system will not gain the control of the bus.

» The 8086, while executing the prefixed instruction, asserts the bus lock signal output,
which may be connected to an external bus controller.

*By prefetching the instruction, there is a considerable speeding up in instruction
execution in 8086. This is known as instruction pipelining.

*At the starting the CS:IP is loaded with the required address from which the execution is
to be started. Initially, the queue will be empty an the microprocessor starts a fetch
operation to bring one byte (the first byte) of instruction code, if the CS:IP address is odd
or two bytes at a time, if the CS:IP address is even.

*The first byte is a complete opcode in case of some instruction (one byte opcode
instruction) and is a part of opcode, in case of some instructions (two byte opcode
instructions), the remaining part of code lie in second byte.

*The second byte is then decoded in continuation with the first byte to decide the
instruction length and the number of subsequent bytes to be treated as instruction data.
*The queue is updated after every byte is read from the queue but the fetch cycle is
initiated by BIU only if at least two bytes of the queue are empty and the EU may be
concurrently executing the fetched instructions.

*The next byte after the instruction is completed is again the first opcode byte of the next
instruction. A similar procedure is repeated till the complete execution of the program.

*The fetch operation of the next instruction is overlapped with the execution of the
current instruction. As in the architecture, there are two separate units, namely Execution
unit and Bus interface unit.

*While the execution unit is busy in executing an instruction, after it is completely
decoded, the bus interface unit may be fetching the bytes of the next instruction from
memory, depending upon the queue status.

QS QS Indication
No operation
First byte of the opcode from the queue

Empty queue
Subsequent byte from the queue

e © O
— O = O

*RQ/GT,y, RQ/GT; — Request/Grant : These pins are used by the other local bus master
in maximum mode, to force the processor to release the local bus at the end of the
processor current bus cycle.

*Each of the pin is bidirectional with RQ/GT, having higher priority than RQ/GTj.
*RQ/GT pins have internal pull-up resistors and may be left unconnected.

*Request/Grant sequence is as follows:

1.A pulse of one clock wide from another bus master requests the bus access to 8086.
2.During T4(current) or T;(next) clock cycle, a pulse one clock wide from 8086 to the
requesting master, indicates that the 8086 has allowed the local bus to float and that it
will enter the ‘hold acknowledge’ state at next cycle. The CPU bus interface unit is likely
to be disconnected from the local bus of the system.

3.A one clock wide pulse from the another master indicates to the 8086 that the hold
request is about to end and the 8086 may regain control of the local bus at the next clock
cycle. Thus each master to master exchange of the local bus is a sequence of 3 pulses.
There must be at least one dead clock cycle after each bus exchange.

*The request and grant pulses are active low.

*For the bus request those are received while 8086 is performing memory or I/O cycle,
the granting of the bus is governed by the rules as in case of HOLD and HLDA in
minimum mode.

General Bus Operation

*The 8086 has a combined address and data bus commonly referred as a time multiplexed
address and data bus.

* The main reason behind multiplexing address and data over the same pins is the
maximum utilisation of processor pins and it facilitates the use of 40 pin standard DIP
package.

*The bus can be demultiplexed using a few latches and transreceivers, when ever
required.

*Basically, all the processor bus cycles consist of at least four clock cycles. These are
referred to as Ty, Ty, T3, T4. The address is transmitted by the processor during T;. It is
present on the bus only for one cycle.

*The negative edge of this ALE pulse is used to separate the address and the data or status
information. In maximum mode, the status lines Sy, S; and S, are used to indicate the
type of operation.

*Status bits S3 to S; are multiplexed with higher order address bits and the BHE signal.
Address is valid during T, while status bits S; to S; are valid during T, through T,.

|<—Mem0ry read cycle4>{<—Memory write cycl
T,!| T, 1,1 1T, T T, | T, T T, T,

CLK

S5 /1] \ /1] \
L AsAsg Ss-S; Aj9-Asg S3-S;
Add/stat X X > X X
i BHE Bus reserve BHE
Add/data X X forDataIn X < X DataOut D;s— Dy)
 Ag-Ais Ds-Dy Ag-Ais Ds-Dy

RD/INTA ! \ /
. ! Ready

DT/R | Wait / Wait
DEN , . /7
WR “—Memory access time—

\ /

General Bus Operation Cycle in Maximum Mode

Minimum Mode 8086 System

In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum
mode by strapping its MN/MX pin to logic 1.

*In this mode, all the control signals are given out by the microprocessor chip itself.
There is a single microprocessor in the minimum mode system.

*The remaining components in the system are latches, transreceivers, clock generator,
memory and I/O devices. Some type of chip selection logic may be required for selecting
memory or I/O devices, depending upon the address map of the system.

Latches are generally buffered output D-type flip-flops like 74L.S373 or 8282. They are
used for separating the valid address from the multiplexed address/data signals and are
controlled by the ALE signal generated by 8086.

*Transreceivers are the bidirectional buffers and some times they are called as data
amplifiers. They are required to separate the valid data from the time multiplexed
address/data signals.

*They are controlled by two signals namely, DEN and DT/R.

*The DEN signal indicates the direction of data, i.e. from or to the processor. The system
contains memory for the monitor and users program storage.

*Usually, EPROM are used for monitor storage, while RAM for users program storage. A
system may contain I/O devices.

*The working of the minimum mode configuration system can be better described in
terms of the timing diagrams rather than qualitatively describing the operations.

*The opcode fetch and read cycles are similar. Hence the timing diagram can be
categorized in two parts, the first is the timing diagram for read cycle and the second is
the timing diagram for write cycle.

*The read cycle begins in T, with the assertion of address latch enable (ALE) signal and
also M / 10 signal. During the negative going edge of this signal, the valid address is
latched on the local bus.

*The BHE and A signals address low, high or both bytes. From T, to T4 , the M/IO
signal indicates a memory or I/O operation.

*At T», the address is removed from the local bus and is sent to the output. The bus is
then tristated. The read (RD) control signal is also activated in T».

*The read (RD) signal causes the address device to enable its data bus drivers. After RD
goes low, the valid data is available on the data bus.

*The addressed device will drive the READY line high. When the processor returns the
read signal to high level, the addressed device will again tristate its bus drivers.

*A write cycle also begins with the assertion of ALE and the emission of the address. The
M/10 signal is again asserted to indicate a memory or I/O operation. In T,, after sending
the address in T}, the processor sends the data to be written to the addressed location.
*The data remains on the bus until middle of T, state. The WR becomes active at the
beginning of T, (unlike RD is somewhat delayed in T, to provide time for floating).

*The BHE and A, signals are used to select the proper byte or bytes of memory or [/O
word to be read or write.

*The M/IO, RD and WR signals indicate the type of data transfer as specified in table
below.

| T4 | T, | T, | Tw I T, IT,

Clk
ALE [\
ADD / STATUS XB E_ A";X S;— 3 ><
ADD/DATA { Ais—A¢ | Valid data D;s— D, X

WR \ Vs
PE \ /
DT/R J L

Write Cycle Timing Diagram for Minimum Mode

*Hold Response sequence: The HOLD pin is checked at leading edge of each clock
pulse. If it is received active by the processor before T, of the previous cycle or during T,
state of the current cycle, the CPU activates HLDA in the next clock cycle and for
succeeding bus cycles, the bus will be given to another requesting master.

*The control of the bus is not regained by the processor until the requesting master does
not drop the HOLD pin low. When the request is dropped by the requesting master, the
HLDA is dropped by the processor at the trailing edge of the next clock.

Clk

HOLD

HLDA / \—

Bus Request and Bus Grant Timings in Minimum Mode System

Maximum Mode 8086 System

*In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.
*In this mode, the processor derives the status signal S,, S|, Sy. Another chip called bus
controller derives the control signal using this status information .

In the maximum mode, there may be more than one microprocessor in the system
configuration.

*The components in the system are same as in the minimum mode system.

*The basic function of the bus controller chip IC8288, is to derive control signals like RD
and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by
the processor on the status lines.

*The bus controller chip has input lines S,, S;, Sy and CLK. These inputs to 8288 are
driven by CPU.

*It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and
AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.
*AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance
of the MCE/PDEN output depends upon the status of the IOB pin.

If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it
acts as peripheral data enable used in the multiple bus configurations.

*INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to
an interrupting device.

*JORC, IOWC are I/O read command and I/O write command signals respectively .
These signals enable an IO interface to read or write the data from or to the address port.

*The MRDC, MWTC are memory read command and memory write command signals
respectively and may be used as memory read or write signals.

*All these command signals instructs the memory to accept or send data from or to the
bus.

*For both of these write command signals, the advanced signals namely AIOWC and
AMWTC are available.

*Here the only difference between in timing diagram between minimum mode and
maximum mode is the status signals used and the available control and advanced
command signals.

»ICIk DEN|—»
< DT/R ®
—>S) /'R Control bus
S q 8288 IORC
’—1 [] »—‘ < IOWT ?
— L 4
—»Reset »>Reset §0 ?()Ellg\l ﬂTC
Clk Sl S CEN_AL__MRDC *
Generator |~ S,
—>RDY 3284 ipeady =tV L
8086 —ak |l
ADg¢-AD I
Aslﬁ- A:: Latches : Address bu >
DT/R
T BHE Ao
LN \ 4 4 \ 4 v
Y]b)att‘:‘l CS0yq CSO, 1\%{{4 CS WR RD
DEN——_> —pjg dutter Memory Peripheral
T} T TT \
| ata bus L)

Maximum Mode 8086 System.

*Ry, Si, S, are set at the beginning of bus cycle.8288 bus controller will output a pulse as
on the ALE and apply a required signal to its DT / R pin during T;.

In T,, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate
MRDC or IORC. These signals are activated until T,4. For an output, the AMWC or
AIOWC is activated from T, to T4 and MWTC or IOWC is activated from T; to Tj.
*The status bit Sy to S, remains active until T; and become passive during T3 and T,.

*If reader input is not activated before T;, wait state will be inserted between T; and T,.

*Timings for RQ/ GT Signals :

The request/grant response sequence contains a series of three pulses. The request/grant
pins are checked at each rising pulse of clock input.

*When a request is detected and if the condition for HOLD request are satisfied, the
processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T,
(next) state.

*When the requesting master receives this pulse, it accepts the control of the bus, it sends
a release pulse to the processor using RQ/GT pin.

|<— One bus cycle - 5
Tll Tz | T3 | T4 | Tl |

Clk
ALE 4/—\ /
-5 Active X Inactive X Active
Add/Status Y BHE, Aj—Arg)\ 87— 8 J----=---==--=--
Add/Data _______ _< A15 - Ao > <])15 - D0 >_ ___________
MRDC \ /

DT/R" —\ /
DN / \

Memory Read Timing in Maximum Mode

«— One bus cycle - 5

I T, | T, | T, | T, | T, |
Clk
ALE / \
Eh Active X mactive X aciv
ADD/STATUS X XBHE), S;—Ss Yoo
ADD/DATA »—<Ais-As X__ Data out Dys— Dy —
AMWC or ATOWC \ /
MWTC or [OWC
\ /
DT/R high

N /

Memory Write Timing in Maximum mode.

e || fLL U

Another master CPU grant bus Master releases
request bus access

RQ/GT Timings in Maximum Mode.

Minimum Mode Interface

*When the Minimum mode operation is selected, the 8086 provides all control signals
needed to implement the memory and I/O interface.

*The minimum mode signal can be divided into the following basic groups : address/data
bus, status, control, interrupt and DMA.

*Address/Data Bus : these lines serve two functions. As an address bus is 20 bits long
and consists of signal lines A, through A 9. A9 represents the MSB and Ay LSB. A 20bit
address gives the 8086 a 1Mbyte memory address space. More over it has an independent
I/O address space which is 64K bytes in length.

*The 16 data bus lines D, through D5 are actually multiplexed with address lines A,
through A5 respectively. By multiplexed we mean that the bus work as an address bus
during first machine cycle and as a data bus during next machine cycles. D5 is the MSB
and D, LSB.

*When acting as a data bus, they carry read/write data for memory, input/output data for
I/0O devices, and interrupt type codes from an interrupt controller.

INTR »
_ Ag-A15,A16/S3— A19/Se
INTA <——
.Interrupt Address / data bus
interface _
TEST _____
Dy-Dss
NMI —p
8086
RESET — MPU > ALE
———» BHE/S;
> M/IO Memory 1/0
HOLD —Pp — R
DMA DT/R controls
interface _
HLDA <€4— RD
—— WR
Vee -
—> DEN
Mode select
l————— READY
MN/MX

TCLK clock

Block Diagram of the Minimum Mode 8086 MPU

*Status signal:

The four most significant address lines A9 through A are also multiplexed but in this
case with status signals S¢ through S;. These status bits are output on the bus at the same
time that data are transferred over the other bus lines.

*Bit S, and S; together from a 2 bit binary code that identifies which of the 8086 internal
segment registers are used to generate the physical address that was output on the address
bus during the current bus cycle.

*Code S,4S; = 00 identifies a register known as extra segment register as the source of the
segment address.

Status line S5 reflects the status of another internal characteristic of the 8086. It is the
logic level of the internal enable flag. The last status bit S4 is always at the logic 0 level.

Sy S; Segment Register
0 0 Extra
0 1 Stack
1 0 Code / none
1 1 Data

Memory segment status codes.

*Control Signals :

The control signals are provided to support the 8086 memory I/O interfaces. They
control functions such as when the bus is to carry a valid address in which direction data
are to be transferred over the bus, when valid write data are on the bus and when to put
read data on the system bus.

*ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on
the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse
at ALE.

*Another control signal that is produced during the bus cycle is BHE bank high enable.
Logic 0 on this used as a memory enable signal for the most significant byte half of the
data bus Dg through D;. These lines also serves a second function, which is as the S,
status line.

*Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress
and in which direction data are to be transferred over the bus.

*The logic level of M/IO tells external circuitry whether a memory or I/O transfer is
taking place over the bus. Logic 1 at this output signals a memory operation and logic 0
an I/O operation.

*The direction of data transfer over the bus is signaled by the logic level output at DT/R.
When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the
transmit mode. Therefore, data are either written into memory or output to an I/O device.
*On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This
corresponds to reading data from memory or input of data from an input port.

*The signal read RD and write WR indicates that a read bus cycle or a write bus cycle is
in progress. The 8086 switches WR to logic 0 to signal external device that valid write or
output data are on the bus.

* On the other hand, RD indicates that the 8086 is performing a read of data of the bus.
During read operations, one other control signal is also supplied. This is DEN (data
enable) and it signals external devices when they should put data on the bus.

*There is one other control signal that is involved with the memory and I/O interface.
This is the READY signal.

*READY signal is used to insert wait states into the bus cycle such that it is extended by
a number of clock periods. This signal is provided by an external clock generator device
and can be supplied by the memory or I/O sub-system to signal the 8086 when they are
ready to permit the data transfer to be completed.

Interrupt signals : The key interrupt interface signals are interrupt request (INTR) and
interrupt acknowledge (INTA).

*INTR is an input to the 8086 that can be used by an external device to signal that it need
to be serviced.

*Logic 1 at INTR represents an active interrupt request. When an interrupt request has
been recognized by the 8086, it indicates this fact to external circuit with pulse to logic 0
at the INTA output.

*The TEST input is also related to the external interrupt interface. Execution of a WAIT
instruction causes the 8086 to check the logic level at the TEST input.

*If the logic 1 is found, the MPU suspend operation and goes into the idle state. The 8086
no longer executes instructions, instead it repeatedly checks the logic level of the TEST
input waiting for its transition back to logic 0.

*As TEST switches to 0, execution resume with the next instruction in the program. This
feature can be used to synchronize the operation of the 8086 to an event in external
hardware.

*There are two more inputs in the interrupt interface: the nonmaskable interrupt NMI and
the reset interrupt RESET.

*On the 0-to-1 transition of NMI control is passed to a nonmaskable interrupt service
routine. The RESET input is used to provide a hardware reset for the 8086. Switching
RESET to logic 0 initializes the internal register of the 8086 and initiates a reset service
routine.

*DMA Interface signals :The direct memory access DMA interface of the 8086
minimum mode consist of the HOLD and HLDA signals.

*When an external device wants to take control of the system bus, it signals to the 8086
by switching HOLD to the logic 1 level. At the completion of the current bus cycle, the
8086 enters the hold state. In the hold state, signal lines AD, through AD s, A;4/S;3

through A /S, BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z state.

The 8086 signals external device that it is in this state by switching its HLDA output to
logic 1 level.

Maximum Mode Interface

*When the 8086 is set for the maximum-mode configuration, it provides signals for
implementing a multiprocessor / coprocessor system environment.

*By multiprocessor environment we mean that one microprocessor exists in the system
and that each processor is executing its own program.

* Usually in this type of system environment, there are some system resources that are
common to all processors.

*They are called as global resources. There are also other resources that are assigned to
specific processors. These are known as local or private resources.

*Coprocessor also means that there is a second processor in the system. In this two
processor does not access the bus at the same time.

*One passes the control of the system bus to the other and then may suspend its operation.
*In the maximum-mode 8086 system, facilities are provided for implementing allocation
of global resources and passing bus control to other microprocessor or coprocessor.

| INIT

> — _ Multi Bus
_| So '4—» BUSY
7l s ¢—» CBRQ
> S, 8289 ——» BPRO
—— » LOCK Bus BPRN
CRQLCK: ¢ gl
CLK RESB > BREQ
Vee GND SYSB/RESB T
ANYREQ CLK AEN TOB [BCLK
INTR—p| Lock CLK AEN —¢_$ 0B
S, L —

—> —_— MRDC ——
TEST - »[CLK AEN TOB > MRDC wrC
NMI > e ol So > AMWC

—_ Ll
> S Py | 51 8288 Bus ——————% IORC
RESET 1S, controller —»10WC
DEN —» AIOWC
DT/R — INTA
—» MCE/PDEN
8086 MPU —LALE , DEN
» DT/R g
» ALE
Ag-Ays,
MX Aq6/S3-A19/S¢
MN/MX
> Dy -Dys
- —» BHAE
< »RD
< READY
> QS1, QSo

" ” Local bus control
RQ/GT, RQ/GT, 8086 Maximum mode Block Diagram

8288 Bus Controller — Bus Command and Control Signals:

8086 does not directly provide all the signals that are required to control the memory,
I/O and interrupt interfaces.

*Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced
by the 8086. Instead it outputs three status signals S, S, S, prior to the initiation of each
bus cycle. This 3- bit bus status code identifies which type of bus cycle is to follow.
*S,S,S, are input to the external bus controller device, the bus controller generates the
appropriately timed command and control signals.

Status I t

TAtus mpats _ CPU Cycles 8288

S, Sy 0 Command

0 0 0 Interrupt Acknowledge INTA

0 0 1 Read 1/0 Port IORC

0 1 0 Write 1/0 Port IOWC, AIOWC
0 1 1 Halt None

1 0 0 Instruction Fetch MRDC

1 0 1 Read Memory MRDC

1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None

Bus Status Codes

*The 8288 produces one or two of these eight command signals for each bus cycles. For
instance, when the 8086 outputs the code S,S;S, equals 001, it indicates that an 1/O read
cycle is to be performed.

*In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.
*The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals
provide the same functions as those described for the minimum system mode. This set of
bus commands and control signals is compatible with the Multibus and industry standard
for interfacing microprocessor systems.

*The output of 8289 are bus arbitration signals:

Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority
in (BPRN), bus request (BREQ) and bus clock (BCLK).

*They correspond to the bus exchange signals of the Multibus and are used to lock other
processor off the system bus during the execution of an instruction by the 8086.

*In this way the processor can be assured of uninterrupted access to common system
resources such as global memory.

*Queue Status Signals : Two new signals that are produced by the 8086 in the
maximum-mode system are queue status outputs QS, and QS;. Together they form a 2-bit
queue status code, QS;QS,.

*Following table shows the four different queue status.

QS, QS, Queue Status

0 (low) | 0 No Operation. During the last clock cycle, nothing was
taken from the queue.

0 1 | First Byte. The byte taken from the queue was the first byte
of the instruction.

1 (high) | ¢ | Queue Empty. The queue has been reinitialized as a result
of the execution of a transfer instruction.

Subsequent Byte. The byte taken from the queue was a
subsequent byte of the instruction.

Queue status codes

*Local Bus Control Signal — Request / Grant Signals: In a maximum mode
configuration, the minimum mode HOLD, HLDA interface is also changed. These two
are replaced by request/grant lines RQ/ GTyand RQ/ GT}, respectively. They provide a
prioritized bus access mechanism for accessing the local bus.

Internal Registers of 8086

*The 8086 has four groups of the user accessible internal registers. They are the
instruction pointer, four data registers, four pointer and index register, four segment
registers.

*The 8086 has a total of fourteen 16-bit registers including a 16 bit register called the
status register, with 9 of bits implemented for status and control flags.

*Most of the registers contain data/instruction offsets within 64 KB memory segment.
There are four different 64 KB segments for instructions, stack, data and extra data. To
specify where in 1 MB of processor memory these 4 segments are located the processor
uses four segment registers:

*Code segment (CS) is a 16-bit register containing address of 64 KB segment with
processor instructions. The processor uses CS segment for all accesses to instructions
referenced by instruction pointer (IP) register. CS register cannot be changed directly.
The CS register is automatically updated during far jump, far call and far return
instructions.

*Stack segment (SS) is a 16-bit register containing address of 64KB segment with
program stack. By default, the processor assumes that all data referenced by the stack
pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register
can be changed directly using POP instruction.

*Data segment (DS) is a 16-bit register containing address of 64KB segment with
program data. By default, the processor assumes that all data referenced by general
registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment.
DS register can be changed directly using POP and LDS instructions.

*Accumulator register consists of two 8-bit registers AL and AH, which can be
combined together and used as a 16-bit register AX. AL in this case contains the low-
order byte of the word, and AH contains the high-order byte. Accumulator can be used
for 1/O operations and string manipulation.

*Base register consists of two 8-bit registers BL and BH, which can be combined together
and used as a 16-bit register BX. BL in this case contains the low-order byte of the word,
and BH contains the high-order byte. BX register usually contains a data pointer used for
based, based indexed or register indirect addressing.

*Count register consists of two 8-bit registers CL and CH, which can be combined
together and used as a 16-bit register CX. When combined, CL register contains the low-
order byte of the word, and CH contains the high-order byte. Count register can be used
in Loop, shift/rotate instructions and as a counter in string manipulation,.

*Data register consists of two 8-bit registers DL and DH, which can be combined
together and used as a 16-bit register DX. When combined, DL register contains the low-
order byte of the word, and DH contains the high-order byte. Data register can be used as
a port number in I/O operations. In integer 32-bit multiply and divide instruction the DX
register contains high-order word of the initial or resulting number.

*The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

*Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is
usually used for based, based indexed or register indirect addressing.

*Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register
indirect addressing, as well as a source data address in string manipulation instructions.
*Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and
register indirect addressing, as well as a destination data address in string manipulation
instructions.

Other registers:

Instruction Pointer (IP) is a 16-bit register.

*Flags is a 16-bit register containing 9 one bit flags.

*Overflow Flag (OF) - set if the result is too large positive number, or is too small
negative number to fit into destination operand.

*Direction Flag (DF) - if set then string manipulation instructions will auto-decrement
index registers. If cleared then the index registers will be auto-incremented.
Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.
Single-step Flag (TF) - if set then single-step interrupt will occur after the next
instruction.

Sign Flag (SF) - set if the most significant bit of the result is set.

*Zero Flag (ZF) - set if the result is zero.

*Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL
register.

*Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the
result is even.

*Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit
during last result calculation.

Addressing Modes

Implied - the data value/data address is implicitly associated with the instruction.
*Register - references the data in a register or in a register pair.

sImmediate - the data is provided in the instruction.

*Direct - the instruction operand specifies the memory address where data is located.
*Register indirect - instruction specifies a register containing an address, where data is
located. This addressing mode works with SI, DI, BX and BP registers.

*Based :- 8-bit or 16-bit instruction operand is added to the contents of a base register
(BX or BP), the resulting value is a pointer to location where data resides.

*Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an index
register (SI or DI), the resulting value is a pointer to location where data resides.

*Based Indexed :- the contents of a base register (BX or BP) is added to the contents of
an index register (SI or DI), the resulting value is a pointer to location where data resides.
*Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP) and index register (SI or DI), the resulting value is
a pointer to location where data resides.

Memory

*Program, data and stack memories occupy the same memory space. As the most of the
processor instructions use 16-bit pointers the processor can effectively address only 64
KB of memory.

* To access memory outside of 64 KB the CPU uses special segment registers to specify
where the code, stack and data 64 KB segments are positioned within 1 MB of memory
(see the "Registers" section below).

*16-bit pointers and data are stored as:

address: low-order byte

address+1: high-order byte

*Program memory - program can be located anywhere in memory. Jump and call
instructions can be used for short jumps within currently selected 64 KB code segment,
as well as for far jumps anywhere within 1 MB of memory.

+All conditional jump instructions can be used to jump within approximately +127 to -
127 bytes from current instruction.

*Data memory - the processor can access data in any one out of 4 available segments,
which limits the size of accessible memory to 256 KB (if all four segments point to
different 64 KB blocks).

*Accessing data from the Data, Code, Stack or Extra segments can be usually done by
prefixing instructions with the DS:, CS:, SS: or ES: (some registers and instructions by
default may use the ES or SS segments instead of DS segment).

*Word data can be located at odd or even byte boundaries. The processor uses two
memory accesses to read 16-bit word located at odd byte boundaries. Reading word data
from even byte boundaries requires only one memory access.

*Stack memory can be placed anywhere in memory. The stack can be located at odd
memory addresses, but it is not recommended for performance reasons (see "Data
Memory" above).

Reserved locations:

*0000h - 03FFh are reserved for interrupt vectors. Each interrupt vector is a 32-bit pointer
in format segment: offset.

*FFFFOh - FFFFFh - after RESET the processor always starts program execution at the
FFFFOh address.

Interrupts

The processor has the following interrupts:

*INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using
STI/CLI instructions or using more complicated method of updating the FLAGS register
with the help of the POPF instruction.

» When an interrupt occurs, the processor stores FLAGS register into stack, disables
further interrupts, fetches from the bus one byte representing interrupt type, and jumps to
interrupt processing routine address of which is stored in location 4 * <interrupt type>.
Interrupt processing routine should return with the IRET instruction.

*NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR
interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine is
stored in location 0008h. This interrupt has higher priority then the maskable interrupt.
*Software interrupts can be caused by:

*INT instruction - breakpoint interrupt. This is a type 3 interrupt.

*INT <interrupt number> instruction - any one interrupt from available 256 interrupts.
*INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the
CPU processes this interrupt it clears TF flag before calling the interrupt processing
routine.

*Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape
opcode (type 7).
*Software interrupt processing is the same as for the hardware interrupts.

EMBLY LANGUAGE U

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Contents

¢ Description of Instructions

¢ Assembly directives

¢ Algorithms with assembly software programs

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Instruction Description

» AAA Instruction - ASCII Adjust after Addition

» AAD Instruction - ASCII adjust before Division

» AAM Instruction - ASCII adjust after Multiplication
» AAS Instruction - ASCII Adjust for Subtraction

» ADC Instruction - Add with carry.

» ADD Instruction - ADD destination, source

» AND Instruction - AND corresponding bits of two operands

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Example

» AAA Instruction - AAA converts the result of the
addition of two valid unpacked BCD digits to a valid 2-digit
BCD number and takes the AL register as its implicit operand.

Two operands of the addition must have its
lower 4 bits contain a number in the range from 0-9.The AAA
instruction then adjust AL so that i1t contains a correct BCD
digit. If the addition produce carry (AF=1), the AH register 1s
incremented and the carry CF and auxiliary carry AF flags are
set to 1. If the addition did not produce a decimal carry, CF and
AF are cleared to 0 and AH 1s not altered. In both cases the
higher 4 bits of AL are cleared to 0.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

AAA will adjust the result of the two ASCII characters
that were in the range from 30h (“0”) to 39h(*9”). This 1s
because the lower 4 bits of those character fall in the range of

0-9.The result of addition 1s not a ASCII character butitis a
BCD digit.

» Example:
MOV AH,0 ;Clear AH for MSD
MOV AL,6 ;BCD 6in AL
ADD AL,S ;Add BCD S to digit in AL
AAA ;AH=1, AL=1 representing BCD 11.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» AAD Instruction - ADD converts unpacked BCD
digits in the AH and AL register into a single binary number in
the AX register in preparation for a division operation.

Before executing AAD, place the Most significant
BCD digit in the AH register and Last significant in the AL
register. When AAD 1s executed, the two BCD digits are

combined 1nto a single binary number by setting
AL=(AH*10)+AL and clearing AH to O.

» Example:
MOV AX,0205h ;The unpacked BCD number 25
AAD ;After AAD , AH=0 and

;AL=19h (25)

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

After the division AL will then contain the unpacked BCD
quotient and AH will contain the unpacked BCD remainder.

» Example:
;AX=0607 unpacked BCD for 67 decimal
;CH=09H
AAD ;Adjust to binary before division
:AX=0043 = 43H =67 decimal
DIV CH ;Divide AX by unpacked BCD in CH

;AL = quotient = 07 unpacked BCD
;AH = remainder = 04 unpacked BCD

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» AAM Instruction -
multiplication of two valid unpacked BCD digits into a valid
2-digit unpacked BCD number and takes AX as an implicit
operand.

To give a valid result the digits that have been
multiplied must be 1n the range of 0 — 9 and the result should
have been placed in the AX register. Because both operands
of multiply are required to be 9 or less, the result must be less
than 81 and thus 1s completely contained in AL.

AAM unpacks the result by dividing AX
by 10, placing the quotient (MSD) in AH and the remainder
(LSD) in AL.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example:

MOV
MOV
MUL
AAM

M. Krishna Kumar

AL, 5

BL, 7

BL. ;Multiply AL by BL , result in AX
;After AAM, AX =0305h (BCD 35)

MAM/M7/MKK18/V1/2004

> AAS Instruction - AAS converts the result of the

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

subtraction of two valid unpacked BCD digits to a single valid
BCD number and takes the AL register as an 1mplicit operand.
The two operands of the subtraction must have its lower 4 bit
contain number in the range from 0 to 9 .The AAS instruction
then adjust AL so that it contain a correct BCD digit.

MOV AX,0901H :;BCD 91
SUB AL, 9 :Minus 9
AAS ; Give AX =0802 h (BCD 82)

SUB

AAS

M. Krishna Kumar

(a)

AL, BL

;AL =0011 1001 =ASCII 9
;BL=0011 0101 =ASCII 5

;(9 -5) Result :

;AL =00000100=BCD 04,CF =0
;Result :

;AL=00000100 =BCD 04

;CF =0 NO Borrow required

MAM/M7/MKK18/V1/2004

(b)

;AL =0011 0101 =ASCII §

;BL=0011 1001 = ASCII 9
SUB AL,BL ;(5-9) Result:

;AL =11111100= -4

; In 2°s complement CF =1
AAS ;Results :

;AL =0000 0100 =BCD 04

:CF =1 borrow needed .

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» ADD Instruction - These instructions add a number
from source to a number from some destination and put the
result 1n the specified destination. The add with carry
instruction ADC, also add the status of the carry flag into the
result. The source and destination must be of same type ,
means they must be a byte location or a word location. If you
want to add a byte to a word, you must copy the byte to a word
location and fill the upper byte of the word with zeroes before
adding.

» EXAMPLE:

ADD AL,74H ;Add immediate number 74H to

; content of AL

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

ADC

ADD

ADD

M. Krishna Kumar

CL,BL ;Add contents of BL plus

;carry status to contents of CL.
:Results in CL

DX, BX ;Add contents of BX to contents
:of DX

DX, [SI] ;Add word from memory at
;offset [SI] in DS to contents of DX

MAM/M7/MKK18/V1/2004

ADD

ADD

; Incorrect because result is too large to fit in 7 bits.

M. Krishna Kumar

; Addition of Un Signed numbers
CL, BL ;CL=01110011 =115 decimal
:+ BL =01001111 =79 decimal
;:Result in CL =11000010 = 194 decimal

; Addition of Signed numbers
CL, BL ;CL =01110011 =+ 115 decimal
:+ BL =01001111 =+79 decimal
:Result in CL =11000010 = - 62 decimal

MAM/M7/MKK18/V1/2004

» AND Instruction - This Performs a bitwise Logical
AND of two operands. The result of the operation 1s stored in
the opl and used to set the flags.

AND opl, op2
To perform a bitwise AND of the two operands, each bit

of the result 1s set to 1 if and only 1f the corresponding bit in
both of the operands is 1, otherwise the bit in the result I cleared

to O .

AND BH, CL ;AND byte in CL with byte in BH
:result in BH
AND BX,00FFh ;AND word in BX with immediate

;00FFH. Mask upper byte, leave
;lower unchanged

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

AND

AND

M. Krishna Kumar

CX,[SI] ; AND word at offset [SI] in data
;segment with word in CX
sregister . Result in CX register .

;BX =10110011 01011110
BX,00FFh ;Mask out upper 8 bits of BX
;Result BX = 00000000 01011110

;CF=0,0F=0,PF=0,SF=0,
ZF =0

MAM/M7/MKK18/V1/2004

> CALL Instruction

Direct within-segment (near or 1ntrasegment)

e Indirect within-segment (near or intrasegment)
Direct to another segment (far or intersegment)

* Indirect to another segment (far or intersegment)

» CBW Instruction - Convert signed Byte to signed
word

» CLC Instruction - Clear the carry flag

» CLD Instruction - Clear direction flag

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» CLI Instruction - Clear interrupt flag

» CMC Instruction - Complement the carry
flag
» CMP Instruction - Compare byte or word-

CMP destination, source.

» CMPS/CMPSB/

CMPSW Instruction - Compare string bytes or
string words

» CWD Instruction - Convert Signed Word to -
Signed Double word

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Example

> CALL Instruction - This Instruction 1s used to transter

execution to a subprogram or procedure. There are two basic
types of CALL ’s : Near and Far.

A Near CALL 1s a call to a procedure
which 1s in the same code segment as the CALL instruction .

When 8086 executes the near CALL 1nstruction 1t decrements
the stack pointer by two and copies the offset of the next
instruction after the CALL on the stack. This offset saved on
the stack 1s referred as the return address, because this is the
address that execution will returns to after the procedure
executes. A near CALL instruction will also load the
instruction pointer with the offset of the first instruction in the
procedure.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

%
¢

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

A RET nstruction at the end of the procedure will return
execution to the instruction after the CALL by coping the
offset saved on the stack back to IP.

A Far CALL 1s a call to a procedure which
is 1n a different from that which contains the CALL
instruction . When 8086 executes the Far CALL nstruction it
decrements the stack pointer by two again and copies the
content of CS register to the stack. It then decrements the
stack pointer by two again and copies the offset contents
offset of the instruction after the CALL to the stack. Finally it
loads CS with segment base of the segment which contains
the procedure and IP with the offset of the first instruction of
the procedure in segment. A RET instruction at end of
procedure will return to the next instruction after the CALL
by restoring the saved CS and IP from the stack.

;Direct within-segment (near or intrasegment)

CALL MULTO sMULTO is the name of
the procedure. The assembler determines displacement of
MULTO from the instruction after the CALL and codes
this displacement in as part of the instruction .

;Indirect within-segment (near or intrasegment)

CALL BX ; BX contains the offset of
the first instruction of the procedure .Replaces contents of
word of IP with contents o register BX.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

CALL WORD PTR[BX] ;Offset of first instruction
of procedure is in two memory addresses in DS .Replaces

contents of IP with contents of word memory location in
DS pointed to by BX.

;Direct to another segment- far or intersegment.

CALL SMART :SMART is the name of the
:Procedure

SMART PROC FAR ; Procedure must be declare as
;an far

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» CBW Instruction - CBW converts the signed value in
the AL register into an equivalent 16 bit signed value 1n the
AX register by duplicating the sign bit to the left.

This 1nstruction copies the sign of a byte in
AL to all the bits in AH. AH i1s then said to be the sign
extension of AL.

Example:
;AX = 00000000 10011011 = - 155 decimal

CBW ;Convert signed byte in AL to signed word in
;AX.

;:Resultin AX=11111111 10011011
;: =-155 decimal

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» CLC Instruction - CLC clear the carry flag (CF) to 0
This instruction has no affect on the processor, registers, or
other flags. It 1s often used to clear the CF before returning
from a procedure to indicate a successful termination. It 1s also

use to clear the CF during rotate operation involving the CF
such as ADC, RCL, RCR .

Example:
CLC ;Clear carry flag.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» CLD Instruction - This instruction reset the
designation flag to zero. This instruction has no effect on the
registers or other flags. When the direction flag 1s cleared /
reset SI and DI will automatically be incremented when one
of the string instruction such as MOVS, CMPS,
SCAS,MOVSB and STOSB executes.

Example :

CLD ;Clear direction flag so that string pointers
;auto increment

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» CLI Instruction - This 1nstruction resets the interrupt
flag to zero. No other flags are affected. If the interrupt flag is
reset , the 8086 will not respond to an interrupt signal on its
INTR input. This CLI instruction has no effect on the
nonmaskable interrupt input, NMI

» CMUC Instruction - If the carry flag CF 1s a zero before
this instruction, 1t will be set to a one after the instruction. If
the carry flag 1s one before this instruction, it will be reset to a
zero after the instruction executes. CMC has no effect on other
flags.

Example:
CMC ;Invert the carry flag.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» CWD Instruction - CWD converts the 16 bit signed
value 1n the AX register into an equivalent 32 bit signed value
in DX: AX register pair by duplicating the sign bit to the left.

The CWD instruction sets all the bits in the
DX register to the same sign bit of the AX register. The effect
1s to create a 32- bit signed result that has same integer value
as the original 16 bit operand.

Example:

Assume AX contains C435h. If the CWD instruction is
executed, DX will contain FFFFh since bit 15 (MSB) of AX
was 1. Both the original value of AX (C435h) and resulting
value of DX : AX (FFFFC435h) represents the same signed
number.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Example:

;DX = 00000000 00000000
;AX =11110000 11000111 = - 3897 decimal

CWD ;Convert signed word in AX to signed double
;word in DX:AX

;Result DX =11111111 11111111
;AX =11110000 11000111 =-3897 decimal .

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» DAA Instruction - Decimal Adjust Accumulator
» DAS Instruction - Decimal Adjust after Subtraction

» DEC Instruction - Decrement destination register or
memory DEC destination.

» DIV Instruction - Unsigned divide-Div source

> ESC Instruction

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» DIV Instruction - This instruction is used to divide an
Unsigned word by a byte or to divide an unsigned double
word by a word.

When dividing a word by a byte , the word must
be in the AX register. After the division AL will contains an 8-
bit result (quotient) and AH will contain an 8- bit remainder. If
an attempt 1s made to divide by 0 or the quotient is too large to
fit in AL (greater than FFH), the 8086 will automatically do a
type O interrupt .

Example:
DIV BL ;Word in AX / byte in BLL
:Quotient in AL . Remainder in AH.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

When a double word 1s divided by a word, the most
significant word of the double word must be in DX and the
least significant word of the double word must be in AX. After
the division AX will contain the 16 —bit result (quotient) and
DX will contain a 16 bit remainder. Again , if an attempt 1s
made to divide by zero or quotient 1s too large to fit in AX (
greater than FFFFH) the 8086 will do a type of 0 interrupt .

Example:
DIV CX ; (Quotient) AX= (DX:AX)/CX
: (Reminder) DX=(DX:AX)%CX

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

For DIV the dividend must always be in AX or DX
and AX, but the source of the divisor can be a register or a
memory location specified by one of the 24 addressing modes.

If you want to divide a byte by a byte, you
must first put the dividend byte in AL and fill AH with all 0’s .
The SUB AH,AH instruction is a quick way to do.

If you want to divide a word by a word,
put the dividend word 1n AX and fill DX with all 0’s. The
SUB DX,DX 1nstruction does this quickly.

» Example: ; AX =37D7H = 14, 295 decimal
: BH=97H = 151 decimal
DIV BH :AX /BH
: AX = Quotient = SEH = 94 decimal
;: AH = Remainder = 65H = 101 decimal

SN NN

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 33

» ESC Instruction - Escape 1nstruction 1s used to pass
instruction to a coprocessor such as the 8087 math coprocessor
which shares the address and data bus with an 8086.
Instruction for the coprocessor are represented by a 6 bit code
embedded 1n the escape instruction. As the 8086 fetches
instruction byte, the coprocessor also catches these bytes from
data bus and puts them in 1ts queue. The coprocessor treats all
of the 8086 1nstruction as an NOP. When 8086 fetches an ESC
instruction , the coprocessor decodes the instruction and
carries out the action specified by the 6 bit code. In most of the
case 8086 treats ESC instruction as an NOP.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» HLT Instruction HALT processing

» IDIV Instruction Divide by signed byte or word

IDIV source

> IMUL Instruction

Multiply signed number-IMUL

source
» IN Instruction - Copy data from a port
IN accumulator, port

» INC Instruction Increment - INC destination

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» HALT Instruction - The HLT instruction will cause the
8086 to stop fetching and executing instructions. The 8086
will enter a halt state. The only way to get the processor out of
the halt state are with an interrupt signal on the INTR pin or
an interrupt signal on NMI pin or a reset signal on the RESET
input .

» IDIV Instruction - This 1nstruction 1s used to divide a
signed word by a signed byte or to divide a signed double
word by a signed word.

» Example:

IDIV BL ;Signed word in AX is divided by signed
;byte in BLL

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example:

IDIV BP ;divide a Signed double word in DX and
;AX by signed word in BP

IDIV BYTE PTR[BX] ; divide AX by a byte at
;offset [BX] in DS

* A signed word divided by a signed byte
;AX =00000011 10101011 = 03ABH=39 decimal

:BL =11010011 =D3H =-2DH = - 45 decimal
IDIV BL;Quotient AL=ECH =- 14H = -20 decimal

:Remainder AH = 27H = + 39 decimal

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» IMUL Instruction - This instruction performs a signed
multiplication.

IMUL op ;In this form the accumulator is the
multiplicand and op 1s the multiplier. op may be a register or a
memory operand.

IMUL opl, op2 ;In this form op1 is always be a
register operand and op2 may be a register or a memory
operand.

» Example:

IMUL BH ;Signed byte in AL times multiplied by
;signed byte in BH and result in AX .

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

%
&
7

» Example:
; 69 * 14
; AL =01000101 = 69 decimal
: BL=00001110 = 14 decimal

IMUL BL ;AX =03C6H= + 966 decimal
;sMSB = 0 because positive result

;-28 %59

; AL =11100100 = - 28 decimal

:BL = 00001110 = 14 decimal
IMUL BL ;AX = F98Ch = - 1652 decimal

; MSB =1 because negative result

N NN

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 39

» IN Instruction - This IN instruction will copy data
from a port to the AL or AX register.

For the Fixed port IN instruction type the 8 — bit
port address of a port 1s specified directly in the instruction.

» Example:
IN AL,0CS8H ;Input a byte from port 0C8H to AL

IN AX, 34H ;Input a word from port 34H to AX

A TO D EQU 4AH
IN AX, A TO_D;Input a word from port 4AH to AX

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

For a variable port IN instruction, the port address
is loaded 1in DX register before IN instruction. DX is 16 bit.
Port address range from 0000H — FFFFH.

» Example:
MOV DX, OFF78H ;Initialize DX point to port
IN AL, DX ;Input a byte from a 8 bit port
;OFF78H to AL
IN AX, DX ;Input a word from 16 bit port to

;OFF78H to AX.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» INC Instruction - INC 1nstruction adds one to the
operand and sets the flag according to the result. INC
Instruction 1s treated as an unsigned binary number.

» Example:
; AX = 7FFFh
INC AX ;After this instruction AX = 8000h

INC BL ; Add 1 to the contents of BL register
INC CL ; Add 1 to the contents of CX register.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» INT Instruction - Interrupt program

» INTO Instruction - Interrupt on overflow.
» IRET Instruction - Interrupt return
» JA/JNBE Instruction - Jump 1f above/Jump if not

below nor equal.

> JAE/JNB/
JNC Instructions

Jump 1f above or equal/
Jump 1f not below/

Jump if no carry.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JA / JNBE - This instruction performs the Jump if
above (or) Jump 1f not below or equal operations according to
the condition, if CF and ZF =0 .

» Example: (1)

CMP AX,4371H ;Compare by subtracting 4371H
;from AX

JA RUN_PRESS ;Jump to label RUN_PRESS if
:AX above 4371H

(2)
CMP AX,4371H ;Compare (AX—-4371H)

JNBE RUN_PRESS ;Jump to label RUN_PRESS if
;AX not below or equal to 4371H

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JAE / JNB / JNC - This instructions performs “ J'he
Jump 1f above or equal, Jump 1f not below, Jump 1f no carry
operations according to the condition, 1f CF = 0.

» Examples:
1. CMP AX,4371H ;Compare (AX —-4371H)
JAE RUN ;Jump to the label RUN if AX is

;above or equal to 4371H .
2. CMP AX,4371H ;Compare (AX —4371H)

JNB RUN 1 sJump to the label RUN 1 if AX
:is not below than 4371H
3. ADD AL, BL ; Add AL, BL. If result is with in
JNC OK acceptable range, continue

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> JB/JC/JNAE Instruction

Jump 1f not above nor equal

> JBE/JNA Instructions

Jump 1f below or equal /
Jump 1f not above

» JCXZ Instruction - Jump if the CX register is
Zero

» JE/JZ Instruction - Jump 1f equal/Jump if zero

» JG/JNLE Instruction - Jump if greater/Jump if not

less than nor equal

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JB/JC/JINAE Instruction - This 1nstruction
performs the Jump 1f below (or) Jump if carry (or) Jump if
not below/ equal operations according to the condition,

1f CF =1
» Example:
1. CMP AX,4371H ;Compare (AX-4371H)
JB RUN P ;Jump to label RUN P if AX is
:below 4371H
2. ADD BX, CX ;Add two words and Jump to

JC ERROR ; label ERROR if CF =1

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JBE/JNA Instruction - This 1nstruction performs
the Jump 1f below or equal (or) Jump 1f not above operations
according to the condition, if CF and ZF = 1

» Example:
CMP AX,4371H ;Compare (AX —-4371H)
JBA RUN ;Jump to label RUN if AX is

;below or equal to 4371H

CMP AX,4371H ;Compare (AX -4371H)

JNA RUN R ;Jump to label RUN R if AX is
:not above than 4371H

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JCXZ Instruction - This 1nstruction performs the Jump
if CX register 1s zero. If CX does not contain all zeros,
execution will simply proceed to the next instruction.

» Example:
JCXZ SKIP LOOP;If CX = 0, skip the process
NXT: SUB [BX],07H ;Subtract 7 from data value

INC BX ; BX point to next value
LOOP NXT ; Loop until CX =0
SKIP LLOOP ;Next instruction

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JE/JZ Instruction Instruction - This 1nstruction
performs the Jump 1f equal (or) Jump 1f zero operations
according to the condition if ZF =1

» Example:
NXT:CMP BX, DX ;Compare (BX — DX)
JE DONE ;Jump to DONE if BX = DX,
SUB BX, AX ;Else subtract Ax
INC CX ;Increment counter

JUMP NXT ;Check again
DONE: MOV AX, CX ;Copy count to AX

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example:

IN AL, SFH ;read data from port SFH
SUB AL, 30H ;Subtract minimum value

JZ STATR ; Jump to label if result of
;subtraction was 0

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JG/JNLE Instruction - This 1nstruction péfforms |

o W

the Jump if greater (or) Jump 1f not less than or equal
operations according to the condition 1f ZF =0 and SF = OF

» Example:
CMP

JG

CMP

JNLE

M. Krishna Kumar

BL, 39H ;Compare by subtracting
:39H from BL

NEXT1 ;Jump to label if BL is
;more positive than 39H

BL, 39H ;Compare by subtracting

:39H from BL
NEXT2 sJump to label it BL is not | ,
less than or equal 39H ¢

MAM/M7/MKK18/V1/2004 52

» JGE/JNL Instruction Jump 1f greater than or equal/

Jump 1f not less than

» JL/JNGE Instruction Jump if less than/Jump 1f not

greater than or equal

» JLE/JNG Instruction - Jump 1f less than or equal/
Jump 1f not greater

» JMP Instruction - Unconditional jump to -
specified destination

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JGE/JNL Instruction - This 1nstruction pefforms
the Jump 1if greater than or equal / Jump 1f not less than
operation according to the condition if SF = OF

» Example:

CMP BL, 39H ;Compare by the
ssubtracting 39H from BL
JGE NEXTI11 ;Jump to label if BL is

;more positive than 39H
; or equal to 39H

CMP BL, 39H ;Compare by subtracting
:39H from BL

JNL NEXT22 ;Jump to label if BL is not
:less than 39H

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004 54

™ e

» JL/JNGE Instruction - This instruction performs the
Jump 1f less than / Jump 1f not greater than or equal operation
according to the condition, if SF # OF

» Example:

CMP BL,39H ;Compare by subtracting 39H
:from BL

JL AGAIN ;Jump to the label if BL is more
;negative than 39H

CMP BL,39H ;Compare by subtracting 39H
:from BL

JNGE AGAINI ; Jump to the label if BL is not
;more positive than 39H or
;not equal to 39H

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JLE/JNG Instruction - This instruction performs the
Jump 1f less than or equal / Jump if not greater operation
according to the condition, if ZF=1 and SF # OF

» Example:

CMP BL, 39h ; Compare by subtracting 39h
:from BL
JLE NXT1 ;Jump to the label if BL is more

;negative than 39h or equal to 39h

CMP BL, 39h ;Compare by subtracting 39h
:from BL
JNG AGAIN2 ; Jump to the label if BL is not

;more positive than 39h

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JNA/JBE Instruction - Jump 1if not above/Jump if
below or equal

» JNAE/JB Instruction - Jump if not above or equal/
Jump if below

» JNB/JNC/JAE Instruction - Jump if not below/Jump if
no carry/Jump if above or
equal
» JNE/JNZ Instruction - Jump if not equal/Jump if
not zero

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> JNE/JNZ Instruction - This instructio
performs the Jump 1f not equal / Jump 1f not zero operation
according to the condition, if ZF=0

» Example:

NXT: IN AL, OF8H ;Read data value from port
CMP AL, 72 ;Compare (AL -72)
JNE NXT ;Jump to NXT if AL # 72

IN AL, OF9H ;Read next port when AL = 72

MOV BX, 2734H ; Load BX as counter
NXT _1:ADD AX, 0002H ;Add count factor to AX

DEC BX ;Decrement BX

JNZ NXT 1 Repeat until BX =0

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JNG/JLE Instruction - Jump 1f not greater/ Jump
if less than or equal

» JNGE/JL Instruction - Jump if not greater than nor
equal/Jump 1f less than

» JNL/JGE Instruction - Jump if not less than/ Jump
if greater than or equal

» JNLE/JG Instruction - Jump if not less than nor
equal to /Jump 1f greater
than

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JNO Instruction

> JNP/JPO Instruction

> JNS Instruction

» JNZ/JNE Instruction

» JO Instruction

M. Krishna Kumar

MAM/M7/MKK18/V1/2004

Jump 1f no parity/ Jump 1f
parity odd

Jump if not signed (Jump if
positive)

Jump 1f not zero / jump 1f
not equal

Jump 1f overflow

» JNO Instruction ~ This 1nstruction performs
the Jump 1f no overflow operation according to the condition,

if OF=0

» Example:
ADD AL, BL ; Add signed bytes in AL and BL
JNO DONE ;Process done if no overflow -

MOV AL, 00H ;Else load error code in AL
DONE: OUT 24H, AL ; Send result to display

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» JNP/JPO Instruction — This 1nstruction performs
the Jump if not parity / Jump if parity odd operation according
to the condition, if PF=0

» Example:
IN AL, OFS8H ;:Read ASCII char from UART
OR AL, AL ;Set flags

JPO ERRORI1 ;If even parity executed, if not
;send error message

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

) L
> 1> JNS Instruction : This instruction hs i #
performs the Jump if not signed (Jump if positive)
operation according to the condition, if SF=0
» Example:
DEC AL ;Decrement counter
JNS REDO ; Jump to label REDO if counter has not
:decremented to FFH
» JO Instruction - This instruction performs

Jump if overflow operation according to the condition OF = 0
» Example:
ADD AL, BL ;Add signed bits in AL and BL
JO ERROR ; Jump to label if overflow occur
;in addition
MOV SUM, AL ; else put the result in memory

:location named SUM
M. Krishna Kumar MAM/M7/MKK18/V1/2004

¢
¢

» JPE/JP Instruction - Jump if parity even/ Jump if
parity

» JPO/JNP Instruction Jump if parity odd/ Jump if

no parity
» JS Instruction - Jump if signed (Jump if
negative)
» JZ/JE Instruction - Jump 1f zero/Jump 1f equal

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

e e

» JPE/JP Instruction - This instruction’
performs the Jump 1f parity even / Jump 1if parity operation
according to the condition, if PF=1

Example:
IN AL, OFSH :Read ASCII char from UART
OR AL, AL ;Set flags

JPE ERROR2 ;odd parity is expected, if not
;send error message

» JS Instruction - This 1nstruction performs
the Jump if sign operation according to the condition, 1f SF=1

» Example:

ADD BL, DH ;Add signed bytes DH to BL

JS JJS S1 sJump to label if result is
snegative

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> LAHF Instruction

» LDS Instruction

> LEA Instruction

> LES Instruction

M. Krishna Kumar

MAM/M7/MKK18/V1/2004

Copy low byte of flag
register to AH

Load register and Ds with
words from memory —

LDS register, memory
address of first word

Load effective address-LEA
register, source

Load register and ES with
words from memory —LES
register, memory address of
first word.

SN NN

6
SN NN

» LAHF Instruction - LAHF instruction copies
the value of SF, ZF, AF, PF, CF, into bits of 7, 6, 4, 2, 0
respectively of AH register. This LAHF nstruction was

provided to make conversion of assembly language programs
written for 8080 and 8085 to 8086 easier.

» LDS Instruction - This 1nstruction loads a far
pointer from the memory address specified by op2 into the DS
segment register and the opl to the register. LDS opl, op2

» Example:

LDS BX, [4326] ; copy the contents of the
memory at displacement 4326H in DS to BL, contents of
the 4327H to BH. Copy contents of 4328H and 4329H in
DS to DS register.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» LEA Instruction - This 1nstruction indicates the offset
of the variable or memory location named as the source and
put this offset in the indicated 16 — bit register.

» Example:
LEA BX, PRICE ;Load BX with offset of PRICE
;in DS
LEA BP, SS:STAK;Load BP with offset of STACK
:in SS
LEA CX, [BX][DI] ;Load CX with EA=BX + DI

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> LOCK Instruction E

» LODS/LODSB/

LODSW Instruction - Load string byte into AL or
Load string word into AX.

» LOOP Instruction - Loop to specified
label until CX =0

> LOOPE /
LOOPZ Instruction

loop while CX # 0 and
ZF=1

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» LODS/LODSB/LODSW Instruction - This
instruction copies a byte from a string location pointed to by SI
to AL or a word from a string location pointed to by SI to AX.
If DF 1s cleared to 0,SI will automatically incremented to point
to the next element of string.

» Example:
CLD ;Clear direction flag so SI is auto incremented

MOV SI, OFFSET SOURCE_STRING
;point SI at start of the string

LODS SOUCE_STRING ;Copy byte or word from
;string to AL or AX

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> LOOP Instruction

i This instruction 1s used to

repeat a series of instruction some number of times

» Example:

MOV BX, OFFSET PRICE

MOV CX, 40

NEXT: MOV AL, [BX]
ADD AL, 07H
DAA

;Point BX at first element in array

;:Load CX with number of
;elements in array

; Get elements from array
;Ad correction factor
; decimal adjust result

MOV [BX], AL ; Put result back in array

LOOP NEXT

M. Krishna Kumar

; Repeat until all elements
;adjusted.

MAM/M7/MKK18/V1/2004

» LOOPE / LOOPZ Instruction - This 1nstruction 1s
used to repeat a group of instruction some number of times
until CX=0and ZF =0

» Example:
MOV BX, OFFSET ARRAY
;point BX at start of the array

DEC BX
MOV CX, 100 ;put number of array elements in
;CX
NEXT:INC BX ;point to next element in array
CMP [BX],0OFFH ;Compare array elements FFH
LOOP NEXT

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» LOOPNE/LOOPNZ Instruction - This instruction is
used to repeat a group of instruction some number of times
until CX=0and ZF = 1

» Example:
MOV BX, OFFSET ARRAYI1
;point BX at start of the array

DEC BX
MOV CX, 100 ;put number of array elements in
;CX
NEXT:INC BX ;point to next elements in array

CMP [BX], 0OFFH ;Compare array elements 0DH
LOOPNE NEXT

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» MOV Instruction : MOV destinationl, source

» MOVS/MOVSB/

MOVSW Instruction - Move string byte or string
word-MOVS destination,
source
» MUL Instruction - Multiply unsigned bytes or

words-MUL source

» NEG Instruction - From 2’s complement —
NEG destination

» NOP Instruction - Performs no operation.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» MOV Instruction - The MOV 1nstruction copies a
word or a byte of data from a specified source to a specified
destination .

MOV opl, op2
» Example:
MOV CX, 037AH ; MOV 037AH into the CX.
MOV AX, BX ;Copy the contents of register BX

:to AX

MOV DL,|BX] ;Copy byte from memory at BX
to DL , BX contains the offset of
;byte in DS.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» MUL Instruction - This 1nstruction multiplies an
unsigned multiplication of the accumulator by the operand
specified by op. The size of op may be a register or memory
operand. MUL op

Example: ;AL = 21h (33 decimal)
;BL = A1h(161 decimal)

MUL BL ;AX =14C1h (5313 decimal) since AH#0,
;CF and OF will set to 1.

MUL BH ; AL times BH, result in AX

MUL CX ;;AX times CX, result high word in DX,
:low word in AX.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» NEG Instruction - NEG performs the two’s
complement subtraction of the operand from zero and sets the
flags according to the result.

;AX =2CBh
NEG AX ;after executing NEG result AX =FD35h.
Example:
NEG AL ;Replace number in AL with its 2’s
;complement

NEG BX ;Replace word in BX with its 2’s
scomplement

NEG BYTE PTR[BX]; Replace byte at offset BX in

; DS with its 2’s complement

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» NOP Instruction - This instruction simply uses up the
three clock cycles and increments the instruction pointer to
point to the next instruction. NOP does not change the status
of any flag. The NOP instruction is used to increase the delay
of a delay loop.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» NOT Instruction - Invert each bit of operand —
NOT destination.

» OR Instruction - Logically OR corresponding of two
operands- OR destination, source.

» OUT Instruction - Output a byte or word to a port —
OUT port, accumulator AL or AX.

> POP Instruction - POP destination

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» NOT Instruction - NOT perform the bitwise
complement of op and stores the result back into op.

NOT op
Example :
NOT BX ;Complement contents of BX register.
;DX =F038h
NOT DX ;after the instruction DX = 0FC7h

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» OR Instruction - OR 1nstruction perform the bit wise
logical OR of two operands .Each bit of the result 1s cleared to 0
if and only if both corresponding bits in each operand are 0,
other wise the bit in the result 1s set to 1.

OR opl, op2

Examples :

OR AH, CL ;:CL ORed with AH, result in AH.
:CX=00111110 10100101

OR CX,FF0O0h ;OR CX with immediate FF00h

;result in CX=11111111 10100101

;Upper byte are all 1’s lower bytes
;are unchanged.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» OUT Instruction - The OUT instruction copies a byte
from AL or a word from AX or a double from the accumulator
to I/O port specified by op. Two forms of OUT instruction are
available : (1) Port number is specified by an immediate byte
constant, (0 - 255).t 1s also called as fixed port form. (2) Port
number 1s provided in the DX register (0 — 65535)

» Example: (1)

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

OUT 3BH, AL ;Copy the contents of the AL to port 3Bh
OUT 2CH,AX ;Copy the contents of the AX to port 2Ch

(2)
MOV DX, 0FFFS8H ;L.oad desired port address in DX
OUT DX, AL ; Copy the contents of AL to
;FFE8h
OUT DX, AX ;Copy content of AX to port
;s FFFSH

» POP Instruction - POP 1nstruction copies the word at
the current top of the stack to the operand specified by op then
increments the stack pointer to point to the next stack.

» Example:
POP DX ;Copy a word from top of the stack to
; DX and increments SP by 2.
POP DS ; Copy a word from top of the stack to
; DS and increments SP by 2.
POP TABLE [BX]

;Copy a word from top of stack to memory in DS with
;EA = TABLE + [BX].

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» POPF Instruction -

> PUSH Instruction -

> PUSHF Instruction-

» RCL Instruction

> RCR Instruction

M. Krishna Kumar

Pop word from top of stack to flag -
register.

PUSH source
Push flag register on the stack

Rotate operand around to the left
through CF —RCL destination, source.

Rotate operand around to the right
through CF- RCR destination, count

MAM/M7/MKK18/V1/2004

» POPF Instruction - This 1nstruction copies a word from
the two memory location at the top of the stack to flag register
and increments the stack pointer by 2.

» PUSH Instruction - PUSH instruction decrements the
stack pointer by 2 and copies a word from a specified source to
the location in the stack segment where the stack pointer pointes.

» Example:
PUSH BX ;Decrement SP by 2 and copy BX to stack
PUSH DS ;Decrement SP by 2 and copy DS to stack

PUSH TABLE|BX] ;Decrement SP by 2 and copy word
;from memory in DS at

:EA = TABLE + [BX] to stack .

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» PUSHF Instruction -
the SP by 2 and copies the word 1n flag register to the memory
location pointed to by SP.

» RCL Instruction - RCL 1nstruction rotates the
bits in the operand specified by opl towards left by the count
specified 1n op2.The operation 1s circular, the MSB of operand
1s rotated 1nto a carry flag and the bit 1n the CF i1s rotated
around into the LSB of operand. RCR opl, op2

» Example:

CLC sput 0 in CF

RCL AX, 1 ;save higher-order bit of AX in CF
RCL DX, 1 ;save higher-order bit of DX in CF
ADC AX, 0 ; setlower order bit if needed.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example :

RCL
and

RCL

MOV
RCL

M. Krishna Kumar

DX, 1 ;Word in DX of 1 bit is moved to left,
;sMSB of word is given to CF and

;CF to LSB.
: CF=0, BH =10110011
BH,1 ;Result: BH=01100110
;CF =1, OF =1 because MSB changed

;CF =1,AX =00011111 10101001
CL,2 ;Load CL for rotating 2 bit position
AX, CL ;Result: CF =0, OF undefined

;AX=01111110 10100110

MAM/M7/MKK18/V1/2004

» RCR Instruction - RCR 1nstruction rotates the bits in
the operand specified by opl towards right by the count
specified in op2. RCR opl, op2

» Example:(1)

RCR BX,1 ;Word in BX is rotated by 1 bit towards
;right and CF will contain MSB bit and
:LSB contain CF bit.
(2) :CF=1,BL =00111000
RCR BL,1 ;Result: BL =10011100, CF =0

;OF =1 because MSB is changed to 1.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» REP/REPE/REPZ/

REPNE/REPNZ - (Prefix) Repeat String
istruction until specified
condition exist

» RET Instruction — Return execution from
procedure to calling
program.
» ROL Instruction - Rotate all bits of operand

left, MSB to LSB
ROL destination, count.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

$
'
$

» ROL Instruction - ROL 1nstruction rotates the bits 1n
the operand specified by opl towards left by the count
specified in op2. ROL moves each bit in the operand to next
higher bit position. The higher order bit 1s moved to lower
order position. Last bit rotated is copied into carry flag.

ROL opl, op2
» Example: (1)

ROL AX,1 ;Word in AX is moved to left by 1 bit
;and MSB bit is to LSB, and CF

;CF =0 ,BH =10101110
ROL BH,1 ;Result: CF ,Of =1, BH = 01011101

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example: (2)

ROL BH, CL

M. Krishna Kumar

:BX=01011100 11010011

:CL = 8 bits to rotate

:Rotate BX 8 bits towards left
:CF =0, BX=11010011 01011100

MAM/M7/MKK18/V1/2004

» ROR Instruction

> SAHF Instruction

M. Krishna Kumar

- Rotate all bits of operand
right, LSB to MSB —
ROR destination, count

— Copy AH register to low
byte of flag register

MAM/M7/MKK18/V1/2004

» ROR Instruction - ROR instruction rotates the bits in
the operand opl to wards right by count specified in op2. The
last bit rotated 1s copied into CF. ROR opl, op2

» Example: (1)

ROR BL,1 ;Rotate all bits in BL. towards right by 1
bit position, LSB bit is moved to MSB
;:and CF has last rotated bit.

(2) ;CF=0,BX=00111011 01110101

ROR BX,1 ;Rotate all bits of BX of 1 bit position
stowards right and CF =1,

BX=10011101 10111010

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example (3)
;CF =0, AL =10110011,
MOVE CL, 04H ;: Load CL

ROR AL, CL :Rotate all bits of AL towards
right ;by 4 bits, CF =0 , AL =00111011
» SAHF Instruction - SAHF copies the value of bits 7, 6,

4, 2, 0 of the AH register into the SF, ZF, AF, PF, and CF
respectively. This instruction was provided to make easier

conversion of assembly language program written for 8080
and 8085 to 8086.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» SAL/SHL Instruction - Shift operand bits left, put
zero in LSB(s)
SAL/AHL destination, count

» SAR Instruction - Shift operand bits right,
new MAB = old MSB

SAR destination, count.

> SBB Instruction . Subtract with borrow
SBB destination, source

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» SAL / SHL Instruction - SAL instruction shifts the
bits in the operand specified by opl to its left by the count
specified in op2. As a bit 1s shifted out of LSB position a 0 1s
kept in LSB position. CF will contain MSB bit.

SAL opl,op2
» Example:
;CF=0,BX=11100101 11010011

SAL BX, 1 ;Shift BX register contents by 1 bit
s;position towards left

;CF=1,BX=11001011 1010011

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» SAR Instruction - SAR instruction shifts the bits in
the operand specified by opl towards right by count specified
in op2.As bit is shifted out a copy of old MSB is taken in MSB

MSB position and LSB is shifted to CF. SAR opl, op2
» Example: (1) : AL =00011101 = +29 decimal, CF =0
SAR AL, 1 ;Shift signed byte in AL towards right
;(divide by 2)
;AL =00001110 =+ 14 decimal, CF =1
(2)
;BH=11110011 =- 13 decimal, CF =1
SAR BH, 1 ;Shifted signed byte in BH to right
:BH=11111001 =-7 decimal, CF =1

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

¢
¢

» SBB Instruction -
from opl, then subtracts 1 from opl 1s CF flag 1s set and result
1s stored 1in opl and it 1s used to set the flag.

» Example:

SUB CX, BX ;CX — BX .. Result in CX

SUBB CH, AL : Subtract contents of AL and
;contents CF from contents of CH
;:Result in CH

SUBB AX, 3427H ;Subtract immediate number
:from AX

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example:
* Subtracting unsigned number

: CL=10011100 = 156 decimal

: BH=00110111 =55 decimal
SUB CL, BH ; CL=01100101 =101 decimal

: CF, AF, SF, ZF =0, OF, PF =1

* Subtracting signed number

: CL=00101110 =+ 46 decimal

;: BH=01001010=+ 74 decimal
SUB CL, BH ;CL=11100100=- 28 decimal

;CF =1, AF, ZF =0,

;SF = 1 result negative
M. Krishna Kumar MAM/M7/MKK18/V1/2004

» STD Instruction Set the direction flag to g

» STI Instruction Set interrupt flag (IF)

» STOS/STOSB/
STOSW Instruction

Store byte or word 1n string.

» SCAS/SCASB/ Scan string byte or a

SCASW Instruction string word.
» SHR Instruction - Shift operand bits right, put
zero 1n MSB
» STC Instruction - Set the carry flag to 1

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> SHR Instruction - SHR instruction shifts thémblts 1n

opl to right by the number of times specified by op2 .

» Example:

SHR
right

MOV

SHR

SHR

M. Krishna Kumar

(1)
BP, 1 ; Shift word in BP by 1 bit position to
; and 0 is kept to MSB
(2)
CL, 03H ;Load desired number of shifts into
:CL

BYTE PYR|BX] ;Shift bytes in DS at offset BX
;and rotate 3 bits to right and
;keep 3 0’s in MSB

(3) SI=10010011 10101101,CF=0

SI,1 ; Result: SI=01001001 11010110

:CF=1,0F=1,SF=0,ZF =0

MAM/M7/MKK18/V1/2004

» TEST Instruction — AND operand to update flags
» WAIT Instruction - Wait for test signal or interrupt signal
» XCHG Instruction - Exchange XCHG destination, source

> XLAT/
XLATB Instruction - Translate a byte in AL

» XOR Instruction - Exclusive OR corresponding bits of
two operands —

XOR destination, source

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» TEST Instruction - This instruction ANDs the contents
of a source byte or word with the contents of specified
destination word. Flags are updated but neither operand 1s
changed . TEST instruction is often used to set flags before a
condition jump instruction

» Examples:

TEST AL, BH :AND BH with AL. no result is
;stored . Update PF, SF, ZF

TEST CX, 0001H ;AND CX with immediate
;number

;no result is stored, Update PF,
:SF

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

¢
¢

» Example :

TEST

M. Krishna Kumar

Al, 80H

:AL = 01010001

;AND immediate 80H with AL to
stest f MSB of AL is1or 0

s ZF=1if MSB of AL =0
;AL = 01010001 (unchanged)
:PF=0,SF=0

;ZF =1 because ANDing produced
; 1s 00

MAM/M7/MKK18/V1/2004

» WAIT Instruction - When this WAIT
instruction executes, the 8086 enters an 1dle condition. This
will stay 1n this state until a signal 1s asserted on TEST input
pin or a valid interrupt signal is received on the INTR or NMI
pin.

FSTSW STATUS ;copy 8087 status word to memory

FWAIT ;wait for 8087 to finish before-
; doing next 8086 instruction

MOV AX,STATUS ;copy status word to AX to
:check bits

» In this code we are adding up of FWAIT instruction so that it

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

will stop the execution of the command until the above
instruction 1is finishes it’s work .so that you are not loosing

data and after that you will allow to continue the execution of
Instructions.

SN NN

105

» XCHG Instruction - The Exchange instruction
exchanges the contents of the register with the contents of
another register (or) the contents of the register with the
contents of the memory location. Direct memory to memory
exchange are not supported.

XCHG opl, op2

The both operands must be the same size and one of the
operand must always be a register .

Example:
XCHG AX, DX ;Exchange word in AX with word in DX

XCHG BL, CH ;Exchange byte in BL with byte in CH
XCHG AL, Money [BX] ;Exchange byte in AL with byte
;in memory at EA.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» XOR Instruction - XOR performs a bit wise logical
XOR of the operands specified by opl and op2. The result of
the operand 1s stored in opl and is used to set the flag.

XOR opl, op2

Example : (Numerical)
; BX=00111101 01101001
;CX = 00000000 11111111

XOR BX, CX ;Exclusive OR CX with BX
;Result BX = 00111101 10010110

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Assembler Directives

» ASSUME

> DB - Defined Byte.

> DD - Defined Double Word
> DQ - Defined Quad Word
> DT - Define Ten Bytes

> DW - Define Word

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» ASSUME Directive - The ASSUME directive is
used to tell the assembler that the name of the logical segment
should be used for a specified segment. The 8086 works

directly with only 4 physical segments: a Code segment, a data
segment, a stack segment, and an extra segment.

» Example:

ASUME CS:CODE ;This tells the assembler
that the logical segment named CODE contains the instruction

statements for the program and should be treated as a code
segment.

ASUME DS:DATA ;This tells the assembler
that for any instruction which refers to a data in the data
segment, data will found 1n the logical segment DATA.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> DB - DB directive 1s used to declare a byte-type
variable or to store a byte in memory location.

» Example:

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,
named as PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes
and 1nitialize with ASCII code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in
memory and give it the name as TEMP, but leave the 100
bytes uninitialized. Program instructions will load values 1nto
these locations.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> DW - The DW directive is used to define a
variable of type word or to reserve storage location of type
word in memory.

» Example:

MULTIPLIER DW 437Ah ; this declares a
variable of type word and named 1t as MULTIPLIER. This
variable 1s 1nitialized with the value 437Ah when it is loaded
into memory to run.

EXP1 DW 1234h, 3456h, 5678h ; this declares an
array of 3 words and initialized with specified values.

STORI1 DW 100 DUP(0); Reserve an array
of 100 words of memory and initialize all words with
0000.Array 1s named as STORI.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» END - END directive 1s placed after the last
statement of a program to tell the assembler that this 1s the end
of the program module. The assembler will ignore any
statement after an END directive. Carriage return 1s required
after the END directive.

» ENDP - ENDP directive 1s used along with the
name of the procedure to indicate the end of a procedure to the
assembler

» Example:
SQUARE NUM PROCE ; It start the procedure
;Some steps to find the square root of a number
SQUARE _NUM ENDP ;Hear 1t 1s the End for the procedure

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» END - End Program

» ENDP - End Procedure

» ENDS - End Segment

» EQU - Equate

» EVEN - Align on Even Memory Address
» EXTRN

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» ENDS - This ENDS directive 1s used with name of
the segment to indicate the end of that logic segment.

» Example:

CODE SEGMENT ;Hear 1t Start the logic
;segment containing code

; Some 1nstructions statements to perform the logical

;operation

CODE ENDS ;End of segment named as
;CODE

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» EQU - This EQU directive is used to give'a name
to some value or to a symbol. Each time the assembler finds
the name in the program, it will replace the name with the
value or symbol you given to that name.

» Example:

FACTOR EQU 03H ;you has to write this
statement at the starting of your program and later in the
program you can use this as follows

ADD AL, FACTOR ; When 1t codes this
instruction the assembler will code 1t as ADDAL, 03H

;The advantage of using EQU in this manner 1s, if FACTOR 1is
used many no of times in a program and you want to change
the value, all you had to do is change the EQU statement at

beginning, i1t will changes the rest of all.
M. Krishna Kumar MAM/M7/MKK18/V1/2004

» EVEN - This EVEN directive instructs the
assembler to increment the location of the counter to the next
even address 1f 1t 1s not already in the even address. If the word
1s at even address 8086 can read a memory in 1 bus cycle.

If the word starts at an odd address, the
8086 will take 2 bus cycles to get the data. A series of words
can be read much more quickly if they are at even address.
When EVEN is used the location counter will simply
incremented to next address and NOP instruction 1s inserted in
that incremented location.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» Example:
DATA1 SEGMENT

; Location counter will point to 0009 after assembler reads
;next statement

SALES DB 9 DUP(?) :declare an array of 9 bytes
EVEN ; Increment location counter to 000AH

RECORD DW 100 DUP(0) ;Array of 100 words will start
;from an even address for quicker read

DATA1 ENDS

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» GROUP - Group Related Segments
» LABLE

» NAME

» OFFSET

» ORG - Originate

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» GROUP - The GROUP directive is used to
group the logical segments named after the directive into one
logical group segment.

> INCLUDE = This INCLUDE directive is used
to 1nsert a block of source code from the named file into the
current source module.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> PROC Procedure

> PTR Pointer
> PUBLC
> SEGMENT

» SHORT

» TYPE

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» PROC - The PROC directive 1s used to identify the
start of a procedure. The term near or far 1s used to specify the
type of the procedure.

» Example:

SMART PROC FAR ; This identifies that
the start of a procedure named as SMART and 1instructs the
assembler that the procedure 1s far .

SMART ENDP

This PROC 1s used with ENDP to indicate the break of
the procedure.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

> PTR - This PTR operator 1s used to assign a
specific type of a variable or to a label.

» Example:

INC [BX] ; This instruction will not know whether to

increment the byte pointed to by BX or a word pointed to by
BX.

INC BYTE PTR [BX] ;increment the byte
;pointed to by BX

This PTR operator can also be used to override the

declared type of variable . If we want to access the a byte in an
array WORDS DW 437Ah, 0B97h,

MOV AL, BYTE PTR WORDS

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» PUBLIC - The PUBLIC directive is used to instruct
the assembler that a specified name or label will be accessed
from other modules.

» Example:

PUBLIC DIVISOR, DIVIDEND ;these two
variables are public so these are available to all modules.

If an instruction in a module refers to a
variable 1n another assembly module, we can access that
module by declaring as EXTRN directive.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

» TYPE - TYPE operator instructs the assembler to
determine the type of a variable and determines the number of
bytes specified to that variable.

» Example:
Byte type variable — assembler will give a value 1
Word type variable — assembler will give a value 2
Double word type variable — assembler will give a value 4

ADD BX, TYPE WORD ARRAY ; hear we want to
increment BX to point to next word in an array of words.

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

DOS Function Calls

» AH 00H : Terminate a Program

> AH 01H : Read the Keyboard

> AH 02H : Write to a Standard Output Device
> AH 08H : Read a Standard Input without Echo
» AH (09H : Display a Character String

» AH 0AH : Buffered keyboard Input

» INT 21H : Call DOS Function

M. Krishna Kumar MAM/M7/MKK18/Vv1/2004

Contents

¢ Description of Instructions

R/

« Assembly directives

+ Algorithms with assembly software programs

DATA TRANSFER INSTRUCTIONS
%GENERAL - PURPOSE BYTE OR WORD TRANSFER INSTRUCTIONS:

»MOV
»PUSH
»POP
»XCHG
»XLAT

+SIMPLE INPUT AND OUTPUT PORT TRANSFER INSTRUCTION:

>IN
»OuUT

“*SPECIAL ADDRESS TRANSFER INSTRUCTION

»LEA
»LDS
»LES

*FLAG TRANSFER INSTRUCTIONS:

»LAHF
»SAHF
»PUSHF
»POPF

ARITHMETIC INSTRUCTIONS

“+ADITION INSTRUCTIONS:

»ADD
»ADC
»INC

»AAA
»DAA

“*SUBTRACTION INSTRUCTIONS:

»SUB

»>SBB

»DEC
»NEG
»CMP
»AAS
»DAS

*MULTIPLICATION INSTRUCTIONS:

»MUL
»IMUL
»AAM

“DIVISION INSTRUCTIONS:

»DIV

»IDIV
»AAD
»CBW
»CWD

BIT MANIPULATION INSTRUCTIONS
%LOGICAL INSTRUCTIONS:

»NOT
»AND
»OR
»XOR
»TEST

“*SHIFT INSTRUCTIONS:
»SHL / SAL

»SHR
»SAR

*RPTATE INSTRUCTIONS:

»ROL
»ROR
»RCL
»RCR

STRING INSTRUCTIONS

»REP

»REPE / REPZ

»REPNE / REPNZ

»MOVS /MOVSB / MOVSW
»COMPS / COMPSB / COMPSW
»SCAS / SCASB / SCASW
»LODS /LODSB / LODSW
»STOS / STOSB / STOSW

PROGRAM EXECUTION TRANSFER INSTRUCTIONS
“UNCONDITIONAL TRANSFER INSTRUCTIONS:

»CALL
»RET
»JMP

+CONDITIONAL TRANSFER INSTRUCTIONS:

»JA /INBE
»JAE / INB
»JB /INAE
»JBE / JNA
»]JC
»JE/]JZ
»JG /INLE
»JGE /JNL
»JL / INGE
»JLE / ING
»JINC
»JINE / INZ
»JNO
»JNP /JPO
»JINS

»JO

»JP / JPE
»JS

ITERATION CONTROL INSTRUCTIONS:

»LOOP

»LOOPE / LOOPZ
»LOOPNE / LOOPNZ
»JCXZ

*INTERRUPT INSTRUCTIONS:
»INT

»INTO
»IRET

PROCESS CONTROL INSTRUCTIONS

+FLAG SET / CLEAR INSTRUCTIONS:

»STC
»CLC
»CMC
»STD
»CLD
»STI
»CLI

+EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS:
»HLT

»WAIT

»ESC

»LOCK
»NOP

Instruction Description

» AAA Instruction - ASCII Adjust after Addition

» AAD Instruction - ASCII adjust before Division

» AAM Instruction - ASCII adjust after Multiplication

» AAS Instruction - ASCII Adjust for Subtraction

» ADC Instruction - Add with carry.
» ADD Instruction - ADD destination, source

» AND Instruction - AND corresponding bits of two operands

Example

»AAA Instruction - AAA converts the result of the addition of two valid
unpacked BCD digits to a valid 2-digit BCD number and takes the AL register as its
implicit operand.

Two operands of the addition must have its lower 4 bits
contain a number in the range from 0-9.The AAA instruction then adjust AL so that it
contains a correct BCD digit. If the addition produce carry (AF=1), the AH register is
incremented and the carry CF and auxiliary carry AF flags are set to 1. If the addition did
not produce a decimal carry, CF and AF are cleared to 0 and AH is not altered. In both
cases the higher 4 bits of AL are cleared to 0.

AAA will adjust the result of the two ASCII characters that were in the
range from 30h (“0”) to 39h(“9”).This is because the lower 4 bits of those character fall
in the range of 0-9.The result of addition is not a ASCII character but it is a BCD digit.
»Example:

MOV AH,0 ;Clear AH for MSD

MOV AL,6 ;BCD 6in AL

ADD AL,S ;Add BCD S to digit in AL

AAA ;AH=1, AL=1 representing BCD 11.

»AAD Instruction - ADD converts unpacked BCD digits in the AH and AL
register into a single binary number in the AX register in preparation for a division
operation.

Before executing AAD, place the Most significant BCD digit in
the AH register and Last significant in the AL register. When AAD is executed, the two
BCD digits are combined into a single binary number by setting AL=(AH*10)+AL and
clearing AH to 0.

»Example:
MOV AX,0205h ;The unpacked BCD number 25
AAD ;After AAD , AH=0 and

;AL=19h (25)
After the division AL will then contain the unpacked BCD quotient and
AH will contain the unpacked BCD remainder.

»Example:
;AX=0607 unpacked BCD for 67 decimal
;CH=09H

AAD ;Adjust to binary before division
;AX=0043 = 43H =67 decimal

DIV CH ;Divide AX by unpacked BCD in CH
;AL = quotient = 07 unpacked BCD
;AH = remainder = 04 unpacked BCD

»AAM Instruction - AAM converts the result of the multiplication of two valid
unpacked BCD digits into a valid 2-digit unpacked BCD number and takes AX as an
implicit operand.

To give a valid result the digits that have been multiplied must be
in the range of 0 — 9 and the result should have been placed in the AX register. Because
both operands of multiply are required to be 9 or less, the result must be less than 81 and
thus is completely contained in AL.

AAM unpacks the result by dividing AX by 10, placing the
quotient (MSD) in AH and the remainder (LSD) in AL.

»Example:
MOV AL, 5
MOV BL,7
MUL BL ;Multiply AL by BL , result in AX
AAM ;After AAM, AX =0305h (BCD 35)
> AAS Instruction - AAS converts the result of the subtraction of two valid

unpacked BCD digits to a single valid BCD number and takes the AL register as an
implicit operand. The two operands of the subtraction must have its lower 4 bit contain
number in the range from 0 to 9 .The AAS instruction then adjust AL so that it contain a
correct BCD digit.

MOV AX,0901H ;BCDO91

SUB AL,9 ;Minus 9
AAS ; Give AX =0802 h (BCD 82)
(a)

;AL =0011 1001 =ASCII 9
;BL=0011 0101 =ASCII 5

SUB AL, BL 5(9 - 5) Result :
;AL =00000100 =BCD 04,CF =0
AAS ;Result :

;AL=00000100 =BCD 04
;CF =0 NO Borrow required

(b)

;AL =0011 0101 =ASCII 5

;BL=0011 1001 = ASCII 9
SUB AL, BL 5(5-9) Result:

;AL =11111100= -4

;in 2’s complement CF =1
AAS sResults :

;AL =0000 0100 =BCD 04

;CF =1 borrow needed .

»ADD Instruction - These instructions add a number from source to a number
from some destination and put the result in the specified destination. The add with carry
instruction ADC, also add the status of the carry flag into the result. The source and
destination must be of same type , means they must be a byte location or a word location.
If you want to add a byte to a word, you must copy the byte to a word location and fill the
upper byte of the word with zeroes before adding.

»EXAMPLE:

ADD AL,74H ;Add immediate number 74H to
; content of AL

ADC CL,BL ;Add contents of BL plus
scarry status to contents of CL.
;Results in CL

ADD DX, BX ;Add contents of BX to contents
;of DX
ADD DX, [SI] ;Add word from memory at

;offset [SI] in DS to contents of DX

; Addition of Un Signed numbers

ADD CL, BL ;CL=01110011 =115 decimal
;+ BL=01001111 =79 decimal
;Result in CL =11000010 = 194 decimal
; Addition of Signed numbers

ADD CL, BL ;CL=01110011 =+ 115 decimal

;+ BL=01001111 = +79 decimal
;Result in CL =11000010 = - 62 decimal

; Incorrect because result is too large to fit in 7 bits.

»AND Instruction -

This Performs a bitwise Logical AND of two operands. The

result of the operation is stored in the op1 and used to set the flags.

AND opl, op2

To perform a bitwise AND of the two operands, each bit of the result is
set to 1 if and only if the corresponding bit in both of the operands is 1, otherwise the bit

in the result I cleared to O .
AND BH, CL

AND BX,00FFh

AND CX,[SI]

AND BX,00FFh

» CALL Instruction

;AND byte in CL with byte in BH
sresult in BH

;AND word in BX with immediate
;00FFH. Mask upper byte, leave
slower unchanged

; AND word at offset [SI] in data
;segment with word in CX
;register . Result in CX register .

;BX=10110011 01011110

;sMask out upper 8 bits of BX
;Result BX = 00000000 01011110
;CF=0,0F=0,PF=0,SF=0,
sZF =0

Direct within-segment (near or intrasegment)
Indirect within-segment (near or intrasegment)
*Direct to another segment (far or intersegment)
Indirect to another segment (far or intersegment)

»CBW Instruction -

» CLC Instruction

» CLD Instruction
> CLI Instruction

» CMC Instruction

» CMP Instruction

Convert signed Byte to signed word
- Clear the carry flag

- Clear direction flag
- Clear interrupt flag

- Complement the carry flag

- Compare byte or word -CMP destination, source.

»CMPS/CMPSB/

CMPSW Instruction - Compare string bytes or string words
»CWD Instruction - Convert Signed Word to - Signed Double word
Example
»CALL Instruction - This Instruction is used to transfer execution to a

subprogram or procedure. There are two basic types of CALL ’s : Near and Far.

A Near CALL is a call to a procedure which is in the same
code segment as the CALL instruction .

When 8086 executes the near CALL instruction it decrements the stack pointer by two
and copies the offset of the next instruction after the CALL on the stack. This offset
saved on the stack is referred as the return address, because this is the address that
execution will returns to after the procedure executes. A near CALL instruction will also
load the instruction pointer with the offset of the first instruction in the procedure.

A RET instruction at the end of the procedure will return execution to the
instruction after the CALL by coping the offset saved on the stack back to IP.

A Far CALL is a call to a procedure which is in a different
from that which contains the CALL instruction . When 8086 executes the Far CALL
instruction it decrements the stack pointer by two again and copies the content of CS
register to the stack. It then decrements the stack pointer by two again and copies the
offset contents offset of the instruction after the CALL to the stack. Finally it loads CS
with segment base of the segment which contains the procedure and IP with the offset of
the first instruction of the procedure in segment. A RET instruction at end of procedure
will return to the next instruction after the CALL by restoring the saved CS and IP from
the stack.

;Direct within-segment (near or intrasegment)

CALL MULTO sMULTO is the name of the procedure.
The assembler determines displacement of MULTO from the instruction after the
CALL and codes this displacement in as part of the instruction .

;Indirect within-segment (near or intrasegment)

CALL BX ; BX contains the offset of the first
instruction of the procedure .Replaces contents of word of IP with contents o
register BX.

CALL WORD PTR[BX] ;Offset of first instruction of procedure is in two
memory addresses in DS .Replaces contents of IP with contents of word memory
location in DS pointed to by BX.

;Direct to another segment- far or intersegment.
CALL SMART ;SMART is the name of the Procedure
SMART PROC FAR ; Procedure must be declare as an far

»CBW Instruction - CBW converts the signed value in the AL register into an
equivalent 16 bit signed value in the AX register by duplicating the sign bit to the left.

This instruction copies the sign of a byte in AL to all the
bits in AH. AH is then said to be the sign extension of AL.

Example:
;s AX= 00000000 10011011 =- 155 decimal
CBW ; Convert signed byte in AL to signed word in AX.
; Resultin AX=11111111 10011011
; = - 155 decimal

»CLC Instruction - CLC clear the carry flag (CF) to 0 This instruction has no
affect on the processor, registers, or other flags. It is often used to clear the CF before
returning from a procedure to indicate a successful termination. It is also use to clear the
CF during rotate operation involving the CF such as ADC, RCL, RCR .

Example:
CLC ;Clear carry flag.

»CLD Instruction - This instruction reset the designation flag to zero. This
instruction has no effect on the registers or other flags. When the direction flag is cleared
/ reset SI and DI will automatically be incremented when one of the string instruction
such as MOVS, CMPS, SCAS,MOVSB and STOSB executes.

Example :

CLD ;Clear direction flag so that string pointers auto increment
» CLI Instruction - This instruction resets the interrupt flag to zero. No other
flags are affected. If the interrupt flag is reset , the 8086 will not respond to an interrupt

signal on its INTR input. This CLI instruction has no effect on the nonmaskable interrupt
input, NMI

»CMC Instruction - If the carry flag CF is a zero before this instruction, it will
be set to a one after the instruction. If the carry flag is one before this instruction, it will
be reset to a zero after the instruction executes. CMC has no effect on other flags.

Example:
CMC ;Invert the carry flag.
»CWD Instruction - CWD converts the 16 bit signed value in the AX register

into an equivalent 32 bit signed value in DX: AX register pair by duplicating the sign bit

to the left.
The CWD instruction sets all the bits in the DX register to

the same sign bit of the AX register. The effect is to create a 32- bit signed result that has
same integer value as the original 16 bit operand.

Example:

Assume AX contains C435h. If the CWD instruction is executed, DX
will contain FFFFh since bit 15 (MSB) of AX was 1. Both the original value of AX
(C435h) and resulting value of DX : AX (FFFFC435h) represents the same signed
number.

Example:

;DX =00000000 00000000

;AX =11110000 11000111 = - 3897 decimal
CWD ;Convert signed word in AX to signed double

sword in DX:AX

;Result DX =11111111 11111111

;AX =11110000 11000111 =-3897 decimal .

»DAA Instruction - Decimal Adjust Accumulator

»DAS Instruction - Decimal Adjust after Subtraction

»DEC Instruction - Decrement destination register or memory DEC
destination.

»DIV Instruction - Unsigned divide-Div source

»ESC Instruction

When a double word is divided by a word, the most significant word of
the double word must be in DX and the least significant word of the double word must be
in AX. After the division AX will contain the 16 —bit result (quotient) and DX will

contain a 16 bit remainder. Again , if an attempt is made to divide by zero or quotient is
too large to fit in AX (greater than FFFFH) the 8086 will do a type of 0 interrupt .

Example:
DIV CX ;(Quotient) AX=(DX:AX)/CX
: (Reminder) DX=(DX:AX)%CX
For DIV the dividend must always be in AX or DX and AX, but
the source of the divisor can be a register or a memory location specified by one of the 24
addressing modes.

If you want to divide a byte by a byte, you must first put
the dividend byte in AL and fill AH with all 0’s . The SUB AH,AH instruction is a quick
way to do.

If you want to divide a word by a word, put the dividend
word in AX and fill DX with all 0’s. The SUB DX,DX instruction does this quickly.

»Example: ;s AX=37D7H = 14, 295 decimal
; BH=97H = 151 decimal
DIV BH ;AX /BH
; AX = Quotient = SEH = 94 decimal
; AH = Remainder = 65H = 101 decimal

»ESC Instruction - Escape instruction is used to pass instruction to a
coprocessor such as the 8087 math coprocessor which shares the address and data bus
with an 8086. Instruction for the coprocessor are represented by a 6 bit code embedded in
the escape instruction. As the 8086 fetches instruction byte, the coprocessor also catches
these bytes from data bus and puts them in its queue. The coprocessor treats all of the
8086 instruction as an NOP. When 8086 fetches an ESC instruction , the coprocessor
decodes the instruction and carries out the action specified by the 6 bit code. In most of
the case 8086 treats ESC instruction as an NOP.

»HLT Instruction - HALT processing
»IDIV Instruction - Divide by signed byte or word IDIV source
»IMUL Instruction - Multiply signed number-IMUL source
>IN Instruction - Copy data from a port
IN accumulator, port

»INC Instruction Increment - INC destination

»HALT Instruction - The HLT instruction will cause the 8086 to stop fetching
and executing instructions. The 8086 will enter a halt state. The only way to get the
processor out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input .

»IDIV Instruction - This instruction is used to divide a signed word by a signed
byte or to divide a signed double word by a signed word.

»Example:

IDIV BL ;Signed word in AX is divided by signed byte in BL

»IMUL Instruction - This instruction performs a signed multiplication.

IMUL op ;In this form the accumulator is the multiplicand and op is
the multiplier. op may be a register or a memory operand.

IMUL opl, op2 ;In this form op1 is always be a register operand and op2
may be a register or a memory operand.

»Example:

IMUL BH ;Signed byte in AL times multiplied by
;signed byte in BH and result in AX .

»Example:
;69 * 14
; AL =01000101 = 69 decimal
; BL=00001110 = 14 decimal
IMUL BL ;AX =03C6H= + 966 decimal
;sMSB = 0 because positive result

;-28*59

; AL =11100100 = - 28 decimal

;sBL =00001110 = 14 decimal
IMUL BL ;AX = F98Ch = - 1652 decimal

; MSB =1 because negative result

>IN Instruction - This IN instruction will copy data from a port to the AL or

AX register.
For the Fixed port IN instruction type the 8 — bit port address of a

port is specified directly in the instruction.

»Example:

IN AL,0C8H ;Input a byte from port 0C8H to AL
IN AX, 34H ;Input a word from port 34H to AX

ATOD EQU 4AH

IN AX, A TO_D ;Input a word from port 4AH to AX

For a variable port IN instruction, the port address is loaded in DX
register before IN instruction. DX is 16 bit. Port address range from 0000H — FFFFH.

»Example:
MOV DX, 0FF78H ;Initialize DX point to port
IN AL, DX ;Input a byte from a 8 bit port
;0FF78H to AL
IN AX, DX ;Input a word from 16 bit port to
;0FF78H to AX.
»INC Instruction - INC instruction adds one to the operand and sets the flag

according to the result. INC instruction is treated as an unsigned binary number.

»Example:
; AX="T7FFFh

INC AX sAfter this instruction AX = 8000h

INC BL ; Add 1 to the contents of BL register

INC CL ; Add1 to the contents of CX register.
»INT Instruction - Interrupt program
»INTO Instruction - Interrupt on overflow.
»IRET Instruction - Interrupt return
»JA/JNBE Instruction - Jump if above/Jump if not below nor equal.
»JAE/JNB/

JNC Instructions - Jump if above or equal/ Jump if not below/

Jump if no carry.

»JA / JNBE - This instruction performs the Jump if above (or) Jump if not

below or equal operations according to the condition, if CF and ZF =0.

»Example: (1)
CMP AX,4371H ;Compare by subtracting 4371H
sfrom AX

JA RUN_PRESS ;Jump to label RUN_PRESS if
;AX above 4371H
(2)
CMP AX,4371H ;Compare (AX-4371H)
JNBE RUN_PRESS ;Jump to label RUN_PRESS if
;AX not below or equal to 4371H

»JAE / JNB/JNC - This instructions performs the Jump if above or equal,
Jump if not below, Jump if no carry operations according to the condition, if CF = 0.

»Examples:

1. CMP AX,4371H ;Compare (AX -4371H)
JAE RUN ;Jump to the label RUN if AX is
;above or equal to 4371H .
2. CMP AX,4371H ;Compare (AX -4371H)

JNB RUN 1 ;Jump to the label RUN 1 if AX
;is not below than 4371H
3. ADD AL, BL ; Add AL, BL. If result is with in JNC OK

;acceptable range, continue

»JB/JC/JNAE Instruction

Jump if below/Jump if carry/
Jump if not above nor equal

»JBE/JNA Instructions - Jump if below or equal /
Jump if not above
»JCXZ Instruction - Jump if the CX register is zero
»JE/JZ Instruction - Jump if equal/Jump if zero
»JG/JNLE Instruction - Jump if greater/Jump if not
less than nor equal
»JB/JC/JNAE Instruction - This instruction performs the Jump if below (or)
Jump if carry (or) Jump if not below/ equal operations according to the condition,
ifCF=1
»Example:
1.CMP AX,4371H ;Compare (AX -4371H)
JB RUN_P ;Jump to label RUN_P if AX is
;sbelow 4371H

2. ADDBX, CX ;Add two words and Jump to

JC ERROR ; label ERROR if CF =1

»JBE/JNA Instruction - This instruction performs the Jump if below or
equal (or) Jump if not above operations according to the condition, if CF and ZF = 1

»Example:
CMP AX,4371H ;Compare (AX-4371H)
JBA RUN ;Jump to label RUN if AX is
sbelow or equal to 4371H

CMP AX,4371H ;Compare (AX-4371H)
JNA RUN_R ;Jump to label RUN_R if AX is
;not above than 4371H

»JCXZ Instruction - This instruction performs the Jump if CX register is zero.
If CX does not contain all zeros, execution will simply proceed to the next instruction.

»Example:

JCXZ SKIP_LOOP;If CX = 0, skip the process
NXT: SUB [BX],07H ;Subtract 7 from data value

INC BX ; BX point to next value
LOOP NXT ; Loop until CX =0
SKIP_LOOP ;Next instruction
»JE/JZ Instruction Instruction - This instruction performs the Jump if equal

(or) Jump if zero operations according to the condition if ZF = 1

»Example:
NXT:CMP BX, DX ;Compare (BX - DX)
JE DONE ;Jump to DONE if BX = DX,
SUB BX, AX ;Else subtract Ax
INC CX ;Increment counter
JUMP NXT ;Check again
DONE: MOV AX, CX ;Copy count to AX
»Example:

IN AL, 8FH sread data from port 8FH
SUB AL, 30H ;Subtract minimum value

JZ STATR ; Jump to label if result of
;subtraction was 0

»JG/JNLE Instruction - This instruction performs the Jump if greater (or)
Jump if not less than or equal operations according to the condition if ZF =0 and SF =
OF

»Example:
CMP BL, 39H ;Compare by subtracting
;39H from BL
JG NEXT1 ;Jump to label if BL is
;more positive than 39H
CMP BL, 39H ;Compare by subtracting
;39H from BL
JNLE NEXT2 ;Jump to label if BL is not
;less than or equal 39H
»JGE/JNL Instruction - Jump if greater than or equal/
Jump if not less than
»JL/JINGE Instruction - Jump if less than/Jump if not
greater than or equal
»JLE/JNG Instruction - Jump if less than or equal/
Jump if not greater
»JMP Instruction - Unconditional jump to -
specified destination
»JGE/JNL Instruction - This instruction performs the Jump if greater than

or equal / Jump if not less than operation according to the condition if SF = OF

»Example:
CMP BL, 39H ;Compare by the
;subtracting 39H from BL
JGE NEXT11 ;Jump to label if BL is

;more positive than 39H
; or equal to 39H

CMP BL, 39H ;Compare by subtracting

;39H from BL
JNL NEXT?22 ;Jump to label if BL is not
;less than 39H
»JL/JINGE Instruction - This instruction performs the Jump if less than /

Jump if not greater than or equal operation according to the condition, if SF # OF

»Example:
CMP BL, 39H ;Compare by subtracting 39H
;from BL
JL AGAIN ;Jump to the label if BL is more
;negative than 39H
CMP BL, 39H ;Compare by subtracting 39H
;from BL
JNGE AGAIN1 ; Jump to the label if BL is not
;more positive than 39H or
;not equal to 39H
»JLE/JNG Instruction - This instruction performs the Jump if less than or

equal / Jump if not greater operation according to the condition, if ZF=1 and SF # OF

»Example:
CMP BL, 3%9h ; Compare by subtracting 39h
;from BL
JLE NXT1 ;Jump to the label if BL is more

;negative than 39h or equal to 39h

CMP BL, 3% ;Compare by subtracting 39h
sfrom BL

JNG AGAIN2 ; Jump to the label if BL is not
;more positive than 3%9h

>»JNA/JBE Instruction -

»JNAE/JB Instruction -

»JNB/JNC/JAE Instruction -

»JNE/JNZ Instruction -

»JNE/JNZ Instruction -

Jump if not above/Jump if
below or equal

Jump if not above or equal/
Jump if below

Jump if not below/Jump if
no carry/Jump if above or equal

Jump if not equal/Jump if
not zero
This instruction performs the Jump if not

equal / Jump if not zero operation according to the condition, if ZF=0

»Example:

NXT: IN AL, O0F8H
CMP AL, 72
JNE NXT

IN AL, OF9H
MOV BX, 2734H

;Read data value from port
;Compare (AL -72)

sJump to NXT if AL # 72
;Read next port when AL =72
; Load BX as counter

NXT 1:ADD AX, 0002H ;Add count factor to AX

DEC BX ;Decrement BX
JNZ NXT 1 Repeat until BX =0
»JNG/JLE Instruction - Jump if not greater/ Jump
if less than or equal
»JNGE/JL Instruction - Jump if not greater than nor
equal/Jump if less than
»JNL/JGE Instruction - Jump if not less than/ Jump
if greater than or equal
»JNLE/JG Instruction - Jump if not less than nor
equal to /Jump if greater than
»JNO Instruction — Jump if no overflow
»JNP/JPO Instruction — Jump if no parity/ Jump if parity odd

»JNS Instruction - Jump if not signed (Jump if positive)

»JNZ/JNE Instruction - Jump if not zero / jump if not equal
»JO Instruction - Jump if overflow
»JNO Instruction — This instruction performs the Jump if no overflow

operation according to the condition, if OF=0

»Example:
ADD AL, BL ; Add signed bytes in AL and BL
JNO DONE ;Process done if no overflow -
MOV AL, 00H ;Else load error code in AL
DONE: OUT 24H, AL ; Send result to display

»JNP/JPO Instruction — This instruction performs the Jump if not parity /
Jump if parity odd operation according to the condition, if PF=0

»Example:
IN AL, OFSH ;Read ASCII char from UART
OR AL, AL ;Set flags
JPO ERRORI ;If even parity executed, if not
;send error message
»JNS Instruction - This instruction performs the Jump

if not signed (Jump if positive) operation according to the condition, if SF=0
»Example:

DEC AL ;Decrement counter
JNS REDO; Jump to label REDO if counter has not
;decremented to FFH

»JO Instruction - This instruction performs Jump if overflow
operation according to the condition OF =0

»Example:

ADD AL, BL ;Add signed bits in AL and BL
JO ERROR ; Jump to label if overflow occur
;in addition
MOV SUM, AL ; else put the result in memory

;location named SUM

»JPE/JP Instruction - Jump if parity even/ Jump if
parity

»JPO/JNP Instruction Jump if parity odd/ Jump if

no parity

»JS Instruction Jump if signed (Jump if negative)

»JZ/JE Instruction - Jump if zero/Jump if equal

»JPE/JP Instruction - This instruction performs the Jump if parity
even / Jump if parity operation according to the condition, if PF=1

Example:
IN AL, OFSH ;Read ASCII char from UART
OR AL, AL ;Set flags
JPE ERROR2 ;odd parity is expected, if not
;send error message
»JS Instruction - This instruction performs the Jump if sign
operation according to the condition, if SF=1
»Example:
ADD BL,DH ;Add signed bytes DH to BL
JS JJS S1 ;Jump to label if result is
;negative
»LAHF Instruction - Copy low byte of flag
register to AH
»>LDS Instruction - Load register and Ds with words from memory —
LDS register, memory address of first word
»LEA Instruction - Load effective address-LEA
register, source
»LES Instruction - Load register and ES with
words from memory —-LES
register, memory address of
first word.
»LAHTF Instruction - LAHEF instruction copies the value of SF, ZF, AF,

PF, CF, into bits of 7, 6, 4, 2, 0 respectively of AH register. This LAHF instruction was
provided to make conversion of assembly language programs written for 8080 and 8085
to 8086 easier.

»LDS Instruction - This instruction loads a far pointer from the
memory address specified by op2 into the DS segment register and the op1 to the register.

LDS opl, op2
»Example:

LDS BX, [4326] ; copy the contents of the memory at
displacement 4326H in DS to BL, contents of the 4327H to BH. Copy contents of
4328H and 4329H in DS to DS register.

»LEA Instruction - This instruction indicates the offset of the variable or
memory location named as the source and put this offset in the indicated 16 — bit register.

»Example:

LEA BX, PRICE ;Load BX with offset of PRICE
;in DS

LEA BP, SS:STAK;Load BP with offset of STACK
;in SS

LEA CX, [BX][DI] ;Load CX with EA=BX + DI

»LOCK Instruction - Assert bus lock signal

»LODS/LODSB/
LODSW Instruction - Load string byte into AL or
Load string word into AX.

»LOQOP Instruction - Loop to specified
label until CX =0

>»LOOPE /
LOOPZ Instruction - loop while CX # 0 and
ZF=1

»LODS/LODSB/LODSW Instruction - This instruction copies a byte from a
string location pointed to by SI to AL or a word from a string location pointed to by SI to
AX. If DF is cleared to 0,SI will automatically incremented to point to the next element
of string.

»Example:
CLD ;Clear direction flag so SI is auto incremented
MOV SI, OFFSET SOURCE_STRING ;point SI at start of the string

LODS SOUCE_STRING ;Copy byte or word from
sstring to AL or AX

»LOOP Instruction -
instruction some number of times

»Example:

This instruction is used to repeat a series of

MOV BX, OFFSET PRICE

MOV CX, 40

NEXT: MOV AL, [BX]
ADD AL, 07H
DAA
MOV [BX], AL
LOOP NEXT

>»LOOPE / LOOPZ Instruction

;Point BX at first element in array

;Load CX with number of
;elements in array

; Get elements from array
;Ad correction factor

; decimal adjust result

; Put result back in array
; Repeat until all elements
;adjusted.

- This instruction is used to repeat a group of

instruction some number of times until CX =0and ZF =0

»Example:

MOV BX, OFFSET ARRAY

DEC BX
MOV CX, 100

NEXT:INC BX
CMP [BX], 0OFFH
LOOP NEXT

>»LOOPNE/LOOPNZ Instruction

;point BX at start of the array

;put number of array elements in
;CX

;point to next element in array
;Compare array elements FFH

- This instruction is used to repeat a group of

instruction some number of times until CX =0 and ZF =1

»Example:

MOV BX, OFFSET ARRAY1

DEC BX
MOV (X, 100

NEXT:INC BX
CMP [BX], 0OFFH
LOOPNE NEXT

;point BX at start of the array

;put number of array elements in
;CX

;point to next elements in array
;Compare array elements 0DH

»MOV Instruction - MOV destination, source

>MOVS/MOVSB/
MOVSW Instruction

Move string byte or string

word-MOVS destination, source
»MUL Instruction - Multiply unsigned bytes or
words-MUL source

»NEG Instruction - From 2’s complement —
NEG destination

»NOP Instruction - Performs no operation.
»MOV Instruction - The MOV instruction copies a word or a byte of data from
a specified source to a specified destination .
MOV opl, op2

»Example:

MOV CX,037AH ; MOV 037AH into the CX.

MOV AX, BX ;Copy the contents of register BX

sto AX
MOV DL,[BX] ;Copy byte from memory at BX

sto DL, BX contains the offset of byte in DS.

»MUL Instruction - This instruction multiplies an unsigned multiplication of
the accumulator by the operand specified by op. The size of op may be a register or
memory operand .

MUL op

Example: ;AL = 21h (33 decimal)
;BL = A1h(161 decimal)
MUL BL ;AX =14C1h (5313 decimal) since AH#0,
;CF and OF will set to 1.
MUL BH ; AL times BH, result in AX
MUL CX ;AXtimes CX, result high word in DX,
slow