
Microprocessors and Microcontrollers Syllabus

M Krishnakumar/IISc, Bangalore V1/1.04.2004/1

Microprocessors and Microcontrollers

Module 1: Architecture of Microprocessors (6)
General definitions of mini computers, microprocessors, micro controllers
and digital signal processors. Overview of 8085 microprocessor. Overview
of 8086 microprocessor. Signals and pins of 8086 microprocessor

Module 2: Assembly language of 8086 (6)
Description of Instructions. Assembly directives. Assembly software
programs with algorithms

Module 3: Interfacing with 8086 (8)
Interfacing with RAMs, ROMs along with the explanation of timing
diagrams. Interfacing with peripheral ICs like 8255, 8254, 8279, 8259, 8259
etc. Interfacing with key boards, LEDs, LCDs, ADCs, and DACs etc.

Module 4: Coprocessor 8087 (4)
Architecture of 8087, interfacing with 8086. Data types, instructions and programming

Module 5: Architecture of Micro controllers (4)
Overview of the architecture of 8051 microcontroller. Overview of the
architecture of 8096 16 bit microcontroller

Module 6: Assembly language of 8051 (4)
Description of Instructions. Assembly directives. Assembly software programs with
algorithms

Module 7: Interfacing with 8051 (5)

Interfacing with keyboards, LEDs, 7 segment LEDs, LCDs, Interfacing with ADCs.

Interfacing with DACs, etc.

Module 8: High end processors (2)

Introduction to 80386 and 80486

Microprocessors and Microcontrollers Syllabus

M Krishnakumar/IISc, Bangalore V1/1.04.2004/1

Lecture Plan:

Module Learning Units Hours Total
1. General definitions of mini computers,
 microprocessors, micro controllers and digital
 signal processors

1

2. Overview of 8085 microprocessor 1
3. Overview of 8086 microprocessor 2.5

1. Architecture of
Microprocessors

4. Signals and pins of 8086 microprocessor 1.5

6

5. Description of Instructions 2.5
6. Assembly directives 0.5

2.Assembly
language of 8086

7. Algorithms with assembly software programs 3
6

8. Interfacing with RAMs, ROMs along with the
 explanation of timing diagrams 2

3. Interfacing with
 8086

9. Interfacing with peripheral ICs like 8255,8254,
 8279, 8259, 8259, key boards, LEDs, LCDs,
 ADCs, DACs etc.

6
8

10. Architecture of 8087, interfacing with 8086 2 4. Coprocessor
 8087 11. Data types, instructions and programming 2

4

12. Overview of the architecture of 8051
 microcontroller. 2 5. Architecture of

 Micro controllers
13. Overview of the architecture of 8096 16 bit
 microcontroller

2

4

14.Description of Instructions 2
15.Assembly directives 1

6. Assembly
language of 8051

16. Algorithms with assembly software programs 2
5

7. Interfacing with
 8051

17. Interfacing with keyboards, LEDs, 7 segment
 LEDs, LCDs, ADCs, DACs 4 4

8. High end
 processors

18. Introduction to 80386 and 80486 2 2

Intel C8085

40-pin ceramic DIP
Purple ceramic/black top/tin pins

8085 Microprocessor

• The salient features of 8085 µp are :
• It is a 8 bit microprocessor.
• It is manufactured with N-MOS technology.
• It has 16 bit address bus and hence can address upto

216 = 65536 bytes (64KB) memory locations through
A0-A15.

• The first 8 lines of address bus and 8 lines of databus are
multiplexed AD0 – AD7.

• Data bus is a group of 8 lines D0 – D7.
• It supports external interrupt request.
• A 16 bit program counter (PC)
• A 16 bit stack pointer (SP)
• Six 8-bit general purpose register arranged in pairs: BC,

DE, HL.
• It requires a signal +5V power supply and operates at 3.2

MHZ single phase clock.
• It is enclosed with 40 pins DIP (Dual in line package).

Memory:
• Program, data and stack memories occupy the same

memory space. The total addressable memory size is 64
KB.

• Program memory - program can be located anywhere in
memory. Jump, branch and call instructions use 16-bit
addresses, i.e. they can be used to jump/branch anywhere
within 64 KB. All jump/branch instructions use absolute
addressing.

• Data memory - the processor always uses 16-bit addresses
so that data can be placed anywhere.

• Stack memory is limited only by the size of memory.
Stack grows downward.

• First 64 bytes in a zero memory page should be reserved
for vectors used by RST instructions.

Interrupts

• The processor has 5 interrupts. They are presented below
in the order of their priority (from lowest to highest):

• INTR is maskable 8080A compatible interrupt. When the
interrupt occurs the processor fetches from the bus one
instruction, usually one of these instructions:

• One of the 8 RST instructions (RST0 - RST7). The
processor saves current program counter into stack and
branches to memory location N * 8 (where N is a 3-bit
number from 0 to 7 supplied with the RST instruction).

• CALL instruction (3 byte instruction). The processor calls
the subroutine, address of which is specified in the second
and third bytes of the instruction.

• RST5.5 is a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC register
into stack and branches to 2CH (hexadecimal) address.

• RST6.5 is a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC register
into stack and branches to 34H (hexadecimal) address.

• RST7.5 is a maskable interrupt. When this interrupt is
received the processor saves the contents of the PC register
into stack and branches to 3CH (hexadecimal) address.

• TRAP is a non-maskable interrupt. When this interrupt is
received the processor saves the contents of the PC register
into stack and branches to 24H (hexadecimal) address.

• All maskable interrupts can be enabled or disabled using
EI and DI instructions. RST 5.5, RST6.5 and RST7.5
interrupts can be enabled or disabled individually using
SIM instruction.

• RESET IN : When this signal goes low, the program
counter (PC) is set to Zero, µp is reset and resets the
interrupt enable and HLDA flip-flops.

• The data and address buses and the control lines are 3-
stated during RESET and because of asynchronous nature
of RESET, the processor internal registers and flags may
be altered by RESET with unpredictable results.

• RESET IN is a Schmitt-triggered input, allowing
connection to an R-C network for power-on RESET delay.

• Upon power-up, RESET IN must remain low for at least
10 ms after minimum Vcc has been reached.

Reset Signals

• For proper reset operation after the power – up duration,
RESET IN should be kept low a minimum of three clock
periods.

• The CPU is held in the reset condition as long as RESET
IN is applied. Typical Power-on RESET RC values R1 =
75KΩ, C1 = 1µF.

• RESET OUT: This signal indicates that µp is being reset.
This signal can be used to reset other devices. The signal is
synchronized to the processor clock and lasts an integral
number of clock periods.

• SID - Serial Input Data Line: The data on this line is
loaded into accumulator bit 7 when ever a RIM instruction
is executed.

• SOD – Serial Output Data Line: The SIM instruction
loads the value of bit 7 of the accumulator into SOD latch
if bit 6 (SOE) of the accumulator is 1.

Serial communication Signal

• HOLD: Indicates that another master is requesting the use
of the address and data buses. The CPU, upon receiving
the hold request, will relinquish the use of the bus as soon
as the completion of the current bus transfer.

• Internal processing can continue. The processor can regain
the bus only after the HOLD is removed.

• When the HOLD is acknowledged, the Address, Data RD,
WR and IO/M lines are 3-stated.

DMA Signals

• HLDA: Hold Acknowledge : Indicates that the CPU has
received the HOLD request and that it will relinquish the
bus in the next clock cycle.

• HLDA goes low after the Hold request is removed. The
CPU takes the bus one half clock cycle after HLDA goes
low.

• READY : This signal Synchronizes the fast CPU and the
slow memory, peripherals.

• If READY is high during a read or write cycle, it indicates
that the memory or peripheral is ready to send or receive
data.

• If READY is low, the CPU will wait an integral number of
clock cycle for READY to go high before completing the
read or write cycle.

• READY must conform to specified setup and hold times.

Registers

• Accumulator or A register is an 8-bit register used for
arithmetic, logic, I/O and load/store operations.

• Flag Register has five 1-bit flags.
• Sign - set if the most significant bit of the result is set.
• Zero - set if the result is zero.
• Auxiliary carry - set if there was a carry out from bit 3 to

bit 4 of the result.
• Parity - set if the parity (the number of set bits in the

result) is even.

• Carry - set if there was a carry during addition, or borrow
during subtraction/comparison/rotation.

General Registers:
• 8-bit B and 8-bit C registers can be used as one 16-bit BC

register pair. When used as a pair the C register contains
low-order byte. Some instructions may use BC register as a
data pointer.

• 8-bit D and 8-bit E registers can be used as one 16-bit DE
register pair. When used as a pair the E register contains
low-order byte. Some instructions may use DE register as a
data pointer.

• 8-bit H and 8-bit L registers can be used as one 16-bit HL
register pair. When used as a pair the L register contains
low-order byte. HL register usually contains a data pointer
used to reference memory addresses.

• Stack pointer is a 16 bit register. This register is always
decremented/incremented by 2 during push and pop.

• Program counter is a 16-bit register.

Instruction Set

• 8085 instruction set consists of the following instructions:
• Data moving instructions.
• Arithmetic - add, subtract, increment and decrement.
• Logic - AND, OR, XOR and rotate.
• Control transfer - conditional, unconditional, call

subroutine, return from subroutine and restarts.
• Input/Output instructions.
• Other - setting/clearing flag bits, enabling/disabling

interrupts, stack operations, etc.

Addressing modes:
• Register - references the data in a register or in a register

pair.
Register indirect - instruction specifies register pair
containing address, where the data is located.
Direct, Immediate - 8 or 16-bit data.

• It is a 16 bit µp.
• 8086 has a 20 bit address bus can access upto 220 memory

locations (1 MB) .
• It can support upto 64K I/O ports.
• It provides 14, 16-bit registers.
• It has multiplexed address and data bus AD0- AD15

and A16 – A19.

8086 Microprocessor

Next Page

• It requires single phase clock with 33% duty cycle to
provide internal timing.

• 8086 is designed to operate in two modes, Minimum and
Maximum.

• It can prefetches upto 6 instruction bytes from memory and
queues them in order to speed up instruction execution.

• It requires +5V power supply.
• A 40 pin dual in line package.

Next Page

Minimum and Maximum Modes:
• The minimum mode is selected by applying logic 1 to the

MN / MX# input pin. This is a single microprocessor
configuration.

• The maximum mode is selected by applying logic 0 to the
MN / MX# input pin. This is a multi micro processors
configuration.

Intel C8086

Intel C8086
5 MHz
40-pin ceramic DIP
Rare Intel C8086 processor in purple ceramic DIP package
with side-brazed pins.

• 8086 has two blocks BIU and EU.
• The BIU performs all bus operations such as instruction

fetching, reading and writing operands for memory and
calculating the addresses of the memory operands. The
instruction bytes are transferred to the instruction queue.

• EU executes instructions from the instruction system byte
queue.

Internal Architecture of 8086

Next Page

• Both units operate asynchronously to give the 8086 an
overlapping instruction fetch and execution mechanism
which is called as Pipelining. This results in efficient use
of the system bus and system performance.

• BIU contains Instruction queue, Segment registers,
Instruction pointer, Address adder.

• EU contains Control circuitry, Instruction decoder, ALU,
Pointer and Index register, Flag register.

Next Page

• BUS INTERFACR UNIT:
• It provides a full 16 bit bidirectional data bus and 20 bit

address bus.
• The bus interface unit is responsible for performing all

external bus operations.
Specifically it has the following functions:
• Instruction fetch, Instruction queuing, Operand fetch and

storage, Address relocation and Bus control.
• The BIU uses a mechanism known as an instruction stream

queue to implement a pipeline architecture.
Next Page

• This queue permits prefetch of up to six bytes of
instruction code. When ever the queue of the BIU is not
full, it has room for at least two more bytes and at the same
time the EU is not requesting it to read or write operands
from memory, the BIU is free to look ahead in the program
by prefetching the next sequential instruction.

• These prefetching instructions are held in its FIFO queue.
With its 16 bit data bus, the BIU fetches two instruction
bytes in a single memory cycle.

• After a byte is loaded at the input end of the queue, it
automatically shifts up through the FIFO to the empty
location nearest the output.

Next Page

• The EU accesses the queue from the output end. It reads
one instruction byte after the other from the output of the
queue. If the queue is full and the EU is not requesting
access to operand in memory.

• These intervals of no bus activity, which may occur
between bus cycles are known as Idle state.

• If the BIU is already in the process of fetching an
instruction when the EU request it to read or write
operands from memory or I/O, the BIU first completes the
instruction fetch bus cycle before initiating the operand
read / write cycle.

Next Page

• The BIU also contains a dedicated adder which is used to
generate the 20bit physical address that is output on the
address bus. This address is formed by adding an appended
16 bit segment address and a 16 bit offset address.

• For example: The physical address of the next instruction
to be fetched is formed by combining the current contents
of the code segment CS register and the current contents of
the instruction pointer IP register.

• The BIU is also responsible for generating bus control
signals such as those for memory read or write and I/O
read or write.

Next Page

• EXECUTION UNIT : The Execution unit is responsible
for decoding and executing all instructions.

• The EU extracts instructions from the top of the queue in
the BIU, decodes them, generates operands if necessary,
passes them to the BIU and requests it to perform the read
or write bys cycles to memory or I/O and perform the
operation specified by the instruction on the operands.

• During the execution of the instruction, the EU tests the
status and control flags and updates them based on the
results of executing the instruction.

Next Page

• If the queue is empty, the EU waits for the next instruction
byte to be fetched and shifted to top of the queue.

• When the EU executes a branch or jump instruction, it
transfers control to a location corresponding to another set
of sequential instructions.

• Whenever this happens, the BIU automatically resets the
queue and then begins to fetch instructions from this new
location to refill the queue.

COMMON SIGNALS

Name Function Type

AD 15– AD 0 Address/ Data Bus Bidirectional
3- state

A / S 6 – A16 / S 3 Address / Status Output 3- State

BHE / S 7 Bus High Enable /
Status

Output
3- State

MN / MX Minimum /
Maximum Mode

Control
Input

RD Read Control Output 3- State

TEST Wait On Test Control Input

READY Wait State Controls Input

RESET System Reset Input

NMI Non Maskable
Interrupt Request Input

INTR Interrupt Request Input

CLK System Clock Input

Vcc + 5 V Input
GND Ground

COMMON SIGNALS

AD 15– AD 0 Address/ Data Bus 3- state
19 S 6 – A / Output 3- State

BHE / S 7 /
Status

Output
3- State

MN / MX / Input

RD Output 3- State

TEST Wait On Test Control Input

READY Wait State Controls Input

RESET System Reset Input

NMI - Input

INTR Interrupt Request Input

CLK System Clock
Vcc + 5 V

Minimum Mode Signals (MN / MX = Vcc)

Name Function Type

HOLD Hold Request Input

HLDA Hold Acknowledge Output

WR Write Control Output,
3- state

M/IO Memory or IO Control Output, 3-State

DT/R Data Transmit /
Receiver

Output,
3- State

DEN Date Enable Output,
3-State

ALE Address Latch Enable Output

INTA Interrupt Acknowledge Output

(/ =)

HLDA

Write Control ,
-

M/IO ,
-

DT/R ,
3- State

DEN ,
3-State

ALE

INTA

Maximum mode signals (MN / MX = GND)

Name Function Type

RQ / GT1, 0 Request / Grant Bus
Access Control

Bidirectional

LOCK Bus Priority Lock Control
Output,
3- State

Output,
3- State

Output

S2 – S0 Bus Cycle Status

QS1, QS0 Instruction Queue Status

Minimum Mode Interface

• When the Minimum mode operation is selected, the 8086
provides all control signals needed to implement the
memory and I/O interface.

• The minimum mode signal can be divided into the
following basic groups : address/data bus, status, control,
interrupt and DMA.

• Address/Data Bus : these lines serve two functions. As an
address bus is 20 bits long and consists of signal lines A0
through A19. A19 represents the MSB and A0 LSB. A 20bit
address gives the 8086 a 1Mbyte memory address space.
More over it has an independent I/O address space which
is 64K bytes in length.

Next Page

• The 16 data bus lines D0 through D15 are actually
multiplexed with address lines A0 through A15
respectively. By multiplexed we mean that the bus work as
an address bus during first machine cycle and as a data bus
during next machine cycles. D15 is the MSB and D0 LSB.

• When acting as a data bus, they carry read/write data for
memory, input/output data for I/O devices, and interrupt
type codes from an interrupt controller.

Next Page

Vcc GND

A0-A15,A16/S3 – A19/S6

Address / data bus

D0 – D15

ALE

BHE / S7

M / IO

DT / R

RD

WR

DEN

READY

CLK clock

MN / MX

Vcc

Mode select

HLDA

HOLD

RESET

INTR

INTA

TEST

NMI
8086

MPU

DMA
interface

Interrupt
interface

Memory
I/O controls

Block Diagram of the Minimum Mode 8086 MPU

Next Page

• Status signal : The four most significant address lines A19
through A16 are also multiplexed but in this case with
status signals S6 through S3. These status bits are output on
the bus at the same time that data are transferred over the
other bus lines.

• Bit S4 and S3 together from a 2 bit binary code that
identifies which of the 8086 internal segment registers are
used to generate the physical address that was output on
the address bus during the current bus cycle.

• Code S4S3 = 00 identifies a register known as extra
segment register as the source of the segment address.

Next Page

S4 S3 Segment Register

0 0

0 1

1 0

1 1

Extra

Stack

Code / none

Data

Memory segment status codes.

Next Page

• Status line S5 reflects the status of another internal
characteristic of the 8086. It is the logic level of the
internal enable flag. The last status bit S6 is always at the
logic 0 level.

• Control Signals : The control signals are provided to
support the 8086 memory I/O interfaces. They control
functions such as when the bus is to carry a valid address
in which direction data are to be transferred over the bus,
when valid write data are on the bus and when to put read
data on the system bus.

Next Page

• ALE is a pulse to logic 1 that signals external circuitry
when a valid address word is on the bus. This address must
be latched in external circuitry on the 1-to-0 edge of the
pulse at ALE.

• Another control signal that is produced during the bus
cycle is BHE bank high enable. Logic 0 on this used as a
memory enable signal for the most significant byte half of
the data bus D8 through D1. These lines also serves a
second function, which is as the S7 status line.

• Using the M/IO and DT/R lines, the 8086 signals which
type of bus cycle is in progress and in which direction data
are to be transferred over the bus.

Next Page

• The logic level of M/IO tells external circuitry whether a
memory or I/O transfer is taking place over the bus. Logic
1 at this output signals a memory operation and logic 0 an
I/O operation.

• The direction of data transfer over the bus is signaled by
the logic level output at DT/R. When this line is logic 1
during the data transfer part of a bus cycle, the bus is in the
transmit mode. Therefore, data are either written into
memory or output to an I/O device.

• On the other hand, logic 0 at DT/R signals that the bus is in
the receive mode. This corresponds to reading data from
memory or input of data from an input port.

Next Page

• The signal read RD and write WR indicates that a read bus
cycle or a write bus cycle is in progress. The 8086 switches
WR to logic 0 to signal external device that valid write or
output data are on the bus.

• On the other hand, RD indicates that the 8086 is
performing a read of data of the bus. During read
operations, one other control signal is also supplied. This is
DEN (data enable) and it signals external devices when
they should put data on the bus.

• There is one other control signal that is involved with the
memory and I/O interface. This is the READY signal.

Next Page

• READY signal is used to insert wait states into the bus
cycle such that it is extended by a number of clock periods.
This signal is provided by an external clock generator
device and can be supplied by the memory or I/O sub-
system to signal the 8086 when they are ready to permit
the data transfer to be completed.

• Interrupt signals : The key interrupt interface signals are
interrupt request (INTR) and interrupt acknowledge
(INTA).

• INTR is an input to the 8086 that can be used by an
external device to signal that it need to be serviced.

Next Page

• Logic 1 at INTR represents an active interrupt request.
When an interrupt request has been recognized by the
8086, it indicates this fact to external circuit with pulse to
logic 0 at the INTA output.

• The TEST input is also related to the external interrupt
interface. Execution of a WAIT instruction causes the 8086
to check the logic level at the TEST input.

• If the logic 1 is found, the MPU suspend operation and
goes into the idle state. The 8086 no longer executes
instructions, instead it repeatedly checks the logic level of
the TEST input waiting for its transition back to logic 0.

Next Page

• As TEST switches to 0, execution resume with the next
instruction in the program. This feature can be used to
synchronize the operation of the 8086 to an event in
external hardware.

• There are two more inputs in the interrupt interface: the
nonmaskable interrupt NMI and the reset interrupt RESET.

• On the 0-to-1 transition of NMI control is passed to a
nonmaskable interrupt service routine. The RESET input is
used to provide a hardware reset for the 8086. Switching
RESET to logic 0 initializes the internal register of the
8086 and initiates a reset service routine.

Next Page

• DMA Interface signals :The direct memory access DMA
interface of the 8086 minimum mode consist of the HOLD
and HLDA signals.

• When an external device wants to take control of the
system bus, it signals to the 8086 by switching HOLD to
the logic 1 level. At the completion of the current bus
cycle, the 8086 enters the hold state. In the hold state,
signal lines AD0 through AD15, A16/S3 through A19/S6,
BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the
high Z state. The 8086 signals external device that it is in
this state by switching its HLDA output to logic 1 level.

Next Page

Maximum Mode Interface

• When the 8086 is set for the maximum-mode
configuration, it provides signals for implementing a
multiprocessor / coprocessor system environment.

• By multiprocessor environment we mean that one
microprocessor exists in the system and that each
processor is executing its own program.

• Usually in this type of system environment, there are
some system resources that are common to all processors.

• They are called as global resources. There are also other
resources that are assigned to specific processors. These
are known as local or private resources.

Next Page

• Coprocessor also means that there is a second processor in
the system. In this two processor does not access the bus at
the same time.

• One passes the control of the system bus to the other and
then may suspend its operation.

• In the maximum-mode 8086 system, facilities are provided
for implementing allocation of global resources and
passing bus control to other microprocessor or
coprocessor.

Next Page

MN/MX

RESET

NMI
TEST

INTR

RQ / GT1 RQ / GT0

8086 MPU

Vcc GND
CLK

CRQLCK

ANYREQ

RESB
SYSB/RESB

AEN IOBLOCK
S0

S1

S2

CLK

S0

S1

S2

CLK AEN IOB

S0

S1

S2
LOCK

8289 Bus
arbiter

CLK AEN IOB

8288 Bus
controller

DEN
DT/ R
ALE

Local bus control

QS1, QS0

READY
RD

BHE

D0 – D15

A0-A15,
A16/S3-A19/S6

ALE

DEN
DT / R

MCE / PDEN
INTA

AIOWC
IOWC

MRDC
MWTC

AMWC
IORC

BCLK

BREQ

BPRN

BPRO
CBRQ

BUSY

INIT
Multi Bus

8086 Maximum mode Block Diagram

• 8288 Bus Controller – Bus Command and Control
Signals: 8086 does not directly provide all the signals that
are required to control the memory, I/O and interrupt
interfaces.

• Specially the WR, M/IO, DT/R, DEN, ALE and INTA,
signals are no longer produced by the 8086. Instead it
outputs three status signals S0, S1, S2 prior to the initiation
of each bus cycle. This 3- bit bus status code identifies
which type of bus cycle is to follow.

• S2S1S0 are input to the external bus controller device, the
bus controller generates the appropriately timed command
and control signals.

Next Page

Status Inputs

S2 S1 S0

0

Bus Status Codes

0
0
0

1

1

1

1 1
1

0
0

0

0

1
1

0
1
0
1

0

1

0

1

CPU Cycles 8288
Command

Interrupt Acknowledge

Read I/O Port
Write I/O Port
Halt

Instruction Fetch

Read Memory

Write Memory

Passive

INTA
IORC

IOWC, AIOWC
None
MRDC

MRDC

MWTC, AMWC

None

Next Page

• The 8288 produces one or two of these eight command
signals for each bus cycles. For instance, when the 8086
outputs the code S2S1S0 equals 001, it indicates that an I/O
read cycle is to be performed.

• In the code 111 is output by the 8086, it is signaling that no
bus activity is to take place.

• The control outputs produced by the 8288 are DEN, DT/R
and ALE. These 3 signals provide the same functions as
those described for the minimum system mode. This set of
bus commands and control signals is compatible with the
Multibus and industry standard for interfacing
microprocessor systems.

Next Page

• 8289 Bus Arbiter – Bus Arbitration and Lock Signals :
This device permits processors to reside on the system bus.
It does this by implementing the Multibus arbitration
protocol in an 8086-based system.

• Addition of the 8288 bus controller and 8289 bus arbiter
frees a number of the 8086 pins for use to produce control
signals that are needed to support multiple processors.

• Bus priority lock (LOCK) is one of these signals. It is
input to the bus arbiter together with status signals S0
through S2.

Next Page

• The output of 8289 are bus arbitration signals: bus busy
(BUSY), common bus request (CBRQ), bus priority out
(BPRO), bus priority in (BPRN), bus request (BREQ) and
bus clock (BCLK).

• They correspond to the bus exchange signals of the
Multibus and are used to lock other processor off the
system bus during the execution of an instruction by the
8086.

• In this way the processor can be assured of uninterrupted
access to common system resources such as global
memory.

Next Page

• Queue Status Signals : Two new signals that are produced
by the 8086 in the maximum-mode system are queue status
outputs QS0 and QS1. Together they form a 2-bit queue
status code, QS1QS0.

• Following table shows the four different queue status.

Next Page

QS1 QS0

0 (low) 0

Queue Status

No Operation. During the last clock cycle, nothing was
taken from the queue.

0 1 First Byte. The byte taken from the queue was the first
byte of the instruction.

1 (high) 0 Queue Empty. The queue has been reinitialized as a result
of the execution of a transfer instruction.

1 1
Subsequent Byte. The byte taken from the queue was a
subsequent byte of the instruction.

Queue status codes

Next Page

• Local Bus Control Signal – Request / Grant Signals: In
a maximum mode configuration, the minimum mode
HOLD, HLDA interface is also changed. These two are
replaced by request/grant lines RQ/ GT0 and RQ/ GT1,
respectively. They provide a prioritized bus access
mechanism for accessing the local bus.

Internal Registers of 8086

• The 8086 has four groups of the user accessible internal
registers. They are the instruction pointer, four data
registers, four pointer and index register, four segment
registers.

• The 8086 has a total of fourteen 16-bit registers including a
16 bit register called the status register, with 9 of bits
implemented for status and control flags.

Next Page

• Most of the registers contain data/instruction offsets within
64 KB memory segment. There are four different 64 KB
segments for instructions, stack, data and extra data. To
specify where in 1 MB of processor memory these 4
segments are located the processor uses four segment
registers:

• Code segment (CS) is a 16-bit register containing address
of 64 KB segment with processor instructions. The
processor uses CS segment for all accesses to instructions
referenced by instruction pointer (IP) register. CS register
cannot be changed directly. The CS register is
automatically updated during far jump, far call and far
return instructions.

Next Page

• Stack segment (SS) is a 16-bit register containing address
of 64KB segment with program stack. By default, the
processor assumes that all data referenced by the stack
pointer (SP) and base pointer (BP) registers is located in
the stack segment. SS register can be changed directly
using POP instruction.

• Data segment (DS) is a 16-bit register containing address
of 64KB segment with program data. By default, the
processor assumes that all data referenced by general
registers (AX, BX, CX, DX) and index register (SI, DI) is
located in the data segment. DS register can be changed
directly using POP and LDS instructions.

Next Page

• Extra segment (ES) is a 16-bit register containing address
of 64KB segment, usually with program data. By default,
the processor assumes that the DI register references the
ES segment in string manipulation instructions. ES register
can be changed directly using POP and LES instructions.

• It is possible to change default segments used by general
and index registers by prefixing instructions with a CS, SS,
DS or ES prefix.

• All general registers of the 8086 microprocessor can be
used for arithmetic and logic operations. The general
registers are:

Next Page

• Accumulator register consists of two 8-bit registers AL
and AH, which can be combined together and used as a 16-
bit register AX. AL in this case contains the low-order byte
of the word, and AH contains the high-order byte.
Accumulator can be used for I/O operations and string
manipulation.

• Base register consists of two 8-bit registers BL and BH,
which can be combined together and used as a 16-bit
register BX. BL in this case contains the low-order byte of
the word, and BH contains the high-order byte. BX register
usually contains a data pointer used for based, based
indexed or register indirect addressing.

Next Page

• Count register consists of two 8-bit registers CL and CH,
which can be combined together and used as a 16-bit
register CX. When combined, CL register contains the
low-order byte of the word, and CH contains the high-
order byte. Count register can be used in Loop, shift/rotate
instructions and as a counter in string manipulation,.

• Data register consists of two 8-bit registers DL and DH,
which can be combined together and used as a 16-bit
register DX. When combined, DL register contains the
low-order byte of the word, and DH contains the high-
order byte. Data register can be used as a port number in
I/O operations. In integer 32-bit multiply and divide
instruction the DX register contains high-order word of the
initial or resulting number.

Next Page

• The following registers are both general and index
registers:

• Stack Pointer (SP) is a 16-bit register pointing to program
stack.

• Base Pointer (BP) is a 16-bit register pointing to data in
stack segment. BP register is usually used for based, based
indexed or register indirect addressing.

• Source Index (SI) is a 16-bit register. SI is used for
indexed, based indexed and register indirect addressing, as
well as a source data address in string manipulation
instructions.

Next Page

• Destination Index (DI) is a 16-bit register. DI is used for
indexed, based indexed and register indirect addressing, as
well as a destination data address in string manipulation
instructions.

Other registers:
• Instruction Pointer (IP) is a 16-bit register.
• Flags is a 16-bit register containing 9 one bit flags.
• Overflow Flag (OF) - set if the result is too large positive

number, or is too small negative number to fit into
destination operand.

Next Page

• Direction Flag (DF) - if set then string manipulation
instructions will auto-decrement index registers. If cleared
then the index registers will be auto-incremented.

• Interrupt-enable Flag (IF) - setting this bit enables
maskable interrupts.

• Single-step Flag (TF) - if set then single-step interrupt will
occur after the next instruction.

• Sign Flag (SF) - set if the most significant bit of the result
is set.

• Zero Flag (ZF) - set if the result is zero.
Next Page

• Auxiliary carry Flag (AF) - set if there was a carry from
or borrow to bits 0-3 in the AL register.

• Parity Flag (PF) - set if parity (the number of "1" bits) in
the low-order byte of the result is even.

• Carry Flag (CF) - set if there was a carry from or borrow
to the most significant bit during last result calculation.

Addressing Modes

• Implied - the data value/data address is implicitly
associated with the instruction.

• Register - references the data in a register or in a register
pair.

• Immediate - the data is provided in the instruction.
• Direct - the instruction operand specifies the memory

address where data is located.
• Register indirect - instruction specifies a register

containing an address, where data is located. This
addressing mode works with SI, DI, BX and BP registers.

• Based :- 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP), the resulting value
is a pointer to location where data resides.

Next Page

• Indexed :- 8-bit or 16-bit instruction operand is added to
the contents of an index register (SI or DI), the resulting
value is a pointer to location where data resides.

• Based Indexed :- the contents of a base register (BX or
BP) is added to the contents of an index register (SI or DI),
the resulting value is a pointer to location where data
resides.

• Based Indexed with displacement :- 8-bit or 16-bit
instruction operand is added to the contents of a base
register (BX or BP) and index register (SI or DI), the
resulting value is a pointer to location where data resides.

Memory

• Program, data and stack memories occupy the same
memory space. As the most of the processor instructions
use 16-bit pointers the processor can effectively address
only 64 KB of memory.

• To access memory outside of 64 KB the CPU uses special
segment registers to specify where the code, stack and data
64 KB segments are positioned within 1 MB of memory
(see the "Registers" section below).

• 16-bit pointers and data are stored as:
address: low-order byte
address+1: high-order byte

Next Page

• 32-bit addresses are stored in "segment: offset" format as:
address: low-order byte of segment
address+1: high-order byte of segment
address+2: low-order byte of offset
address+3: high-order byte of offset

• Physical memory address pointed by segment: offset pair
is calculated as:

• address = (<segment> * 16) + <offset>

Next Page

• Program memory - program can be located anywhere in
memory. Jump and call instructions can be used for short
jumps within currently selected 64 KB code segment, as
well as for far jumps anywhere within 1 MB of memory.

• All conditional jump instructions can be used to jump
within approximately +127 to -127 bytes from current
instruction.

• Data memory - the processor can access data in any one
out of 4 available segments, which limits the size of
accessible memory to 256 KB (if all four segments point to
different 64 KB blocks).

Next Page

• Accessing data from the Data, Code, Stack or Extra
segments can be usually done by prefixing instructions
with the DS:, CS:, SS: or ES: (some registers and
instructions by default may use the ES or SS segments
instead of DS segment).

• Word data can be located at odd or even byte boundaries.
The processor uses two memory accesses to read 16-bit
word located at odd byte boundaries. Reading word data
from even byte boundaries requires only one memory
access.

Next Page

• Stack memory can be placed anywhere in memory. The
stack can be located at odd memory addresses, but it is not
recommended for performance reasons (see "Data
Memory" above).

Reserved locations:
• 0000h - 03FFh are reserved for interrupt vectors. Each

interrupt vector is a 32-bit pointer in format segment:
offset.

• FFFF0h - FFFFFh - after RESET the processor always
starts program execution at the FFFF0h address.

Interrupts

The processor has the following interrupts:
• INTR is a maskable hardware interrupt. The interrupt can

be enabled/disabled using STI/CLI instructions or using
more complicated method of updating the FLAGS register
with the help of the POPF instruction.

• When an interrupt occurs, the processor stores FLAGS
register into stack, disables further interrupts, fetches from
the bus one byte representing interrupt type, and jumps to
interrupt processing routine address of which is stored in
location 4 * <interrupt type>. Interrupt processing routine
should return with the IRET instruction.

Next Page

• NMI is a non-maskable interrupt. Interrupt is processed in
the same way as the INTR interrupt. Interrupt type of the
NMI is 2, i.e. the address of the NMI processing routine is
stored in location 0008h. This interrupt has higher priority
then the maskable interrupt.

• Software interrupts can be caused by:
• INT instruction - breakpoint interrupt. This is a type 3

interrupt.
• INT <interrupt number> instruction - any one interrupt

from available 256 interrupts.
• INTO instruction - interrupt on overflow

Next Page

• Single-step interrupt - generated if the TF flag is set. This
is a type 1 interrupt. When the CPU processes this
interrupt it clears TF flag before calling the interrupt
processing routine.

• Processor exceptions: Divide Error (Type 0), Unused
Opcode (type 6) and Escape opcode (type 7).

• Software interrupt processing is the same as for the
hardware interrupts.

Minimum Mode 8086 System

• In a minimum mode 8086 system, the microprocessor
8086 is operated in minimum mode by strapping its
MN/MX pin to logic 1.

• In this mode, all the control signals are given out by the
microprocessor chip itself. There is a single
microprocessor in the minimum mode system.

• The remaining components in the system are latches,
transreceivers, clock generator, memory and I/O devices.
Some type of chip selection logic may be required for
selecting memory or I/O devices, depending upon the
address map of the system.

• Latches are generally buffered output D-type flip-flops like
74LS373 or 8282. They are used for separating the valid
address from the multiplexed address/data signals and are
controlled by the ALE signal generated by 8086.

• Transreceivers are the bidirectional buffers and some times
they are called as data amplifiers. They are required to
separate the valid data from the time multiplexed
address/data signals.

• They are controlled by two signals namely, DEN and
DT/R.

• The DEN signal indicates the direction of data, i.e. from or
to the processor. The system contains memory for the
monitor and users program storage.

• Usually, EPROM are used for monitor storage, while
RAM for users program storage. A system may contain I/O
devices.

• The clock generator generates the clock from the crystal
oscillator and then shapes it and divides to make it more
precise so that it can be used as an accurate timing
reference for the system.

• The clock generator also synchronizes some external signal
with the system clock. The general system organisation is
as shown in below fig.

• It has 20 address lines and 16 data lines, the 8086 CPU
requires three octal address latches and two octal data
buffers for the complete address and data separation.

• The working of the minimum mode configuration system
can be better described in terms of the timing diagrams
rather than qualitatively describing the operations.

• The opcode fetch and read cycles are similar. Hence the
timing diagram can be categorized in two parts, the first is
the timing diagram for read cycle and the second is the
timing diagram for write cycle.

• The read cycle begins in T1 with the assertion of address
latch enable (ALE) signal and also M / IO signal. During
the negative going edge of this signal, the valid address is
latched on the local bus.

• The BHE and A0 signals address low, high or both bytes.
From T1 to T4 , the M/IO signal indicates a memory or I/O
operation.

• At T2, the address is removed from the local bus and is
sent to the output. The bus is then tristated. The read (RD)
control signal is also activated in T2.

• The read (RD) signal causes the address device to enable
its data bus drivers. After RD goes low, the valid data is
available on the data bus.

• The addressed device will drive the READY line high.
When the processor returns the read signal to high level,
the addressed device will again tristate its bus drivers.

• A write cycle also begins with the assertion of ALE and
the emission of the address. The M/IO signal is again
asserted to indicate a memory or I/O operation. In T2, after
sending the address in T1, the processor sends the data to
be written to the addressed location.

• The data remains on the bus until middle of T4 state. The
WR becomes active at the beginning of T2 (unlike RD is
somewhat delayed in T2 to provide time for floating).

• The BHE and A0 signals are used to select the proper byte
or bytes of memory or I/O word to be read or write.

• The M/IO, RD and WR signals indicate the type of data
transfer as specified in table below.

M / IO RD WR Transfer Type

0

0
1
1

0

1

0
1

1

0
1

0

I / O read
I/O write

Memory read

Memory write

Data Transfer table

T1 T2 T3 TW T4

Clk

ALE

DT / R

DEN

RD

ADD / DATA

ADD / STATUS

Read Cycle Timing Diagram for Minimum Mode

A15 – A0

Bus reserved
for data in D15 – D0

S7 – S3A19 – A16
BHE

T1 T2 T3 TW T4

Clk

T1

ALE

DT / R

DEN

WR

ADD / DATA A15 – A0 Valid data D15 – D0

S7 – S3A19 – A16
BHEADD / STATUS

Write Cycle Timing Diagram for Minimum Mode

• Hold Response sequence: The HOLD pin is checked at
leading edge of each clock pulse. If it is received active by
the processor before T4 of the previous cycle or during T1
state of the current cycle, the CPU activates HLDA in the
next clock cycle and for succeeding bus cycles, the bus
will be given to another requesting master.

• The control of the bus is not regained by the processor
until the requesting master does not drop the HOLD pin
low. When the request is dropped by the requesting master,
the HLDA is dropped by the processor at the trailing edge
of the next clock.

Clk

Bus Request and Bus Grant Timings in Minimum Mode System

HOLD

HLDA

Maximum Mode 8086 System

• In the maximum mode, the 8086 is operated by strapping
the MN/MX pin to ground.

• In this mode, the processor derives the status signal S2, S1,
S0. Another chip called bus controller derives the control
signal using this status information .

• In the maximum mode, there may be more than one
microprocessor in the system configuration.

• The components in the system are same as in the minimum
mode system.

• The basic function of the bus controller chip IC8288, is to
derive control signals like RD and WR (for memory and
I/O devices), DEN, DT/R, ALE etc. using the information
by the processor on the status lines.

• The bus controller chip has input lines S2, S1, S0 and CLK.
These inputs to 8288 are driven by CPU.

• It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,
AMWC, IORC, IOWC and AIOWC. The AEN, IOB and
CEN pins are specially useful for multiprocessor systems.

• AEN and IOB are generally grounded. CEN pin is usually
tied to +5V. The significance of the MCE/PDEN output
depends upon the status of the IOB pin.

• If IOB is grounded, it acts as master cascade enable to
control cascade 8259A, else it acts as peripheral data
enable used in the multiple bus configurations.

• INTA pin used to issue two interrupt acknowledge pulses
to the interrupt controller or to an interrupting device.

• IORC, IOWC are I/O read command and I/O write
command signals respectively . These signals enable an IO
interface to read or write the data from or to the address
port.

• The MRDC, MWTC are memory read command and
memory write command signals respectively and may be
used as memory read or write signals.

• All these command signals instructs the memory to accept
or send data from or to the bus.

• For both of these write command signals, the advanced
signals namely AIOWC and AMWTC are available.

• They also serve the same purpose, but are activated one
clock cycle earlier than the IOWC and MWTC signals
respectively.

• The maximum mode system timing diagrams are divided
in two portions as read (input) and write (output) timing
diagrams.

• The address/data and address/status timings are similar to
the minimum mode.

• ALE is asserted in T1, just like minimum mode. The only
difference lies in the status signal used and the available
control and advanced command signals.

Maximum Mode 8086 System.

Reset

RDY

Clk
Generator

8284

Reset
Clk

Ready

8086

AD6-AD15
A16-A19

A/D

DEN G

DIR

DT/R

Data
buffer

Clk

Data bus

Peripherals
CS WR RD

S0
S1
S2

S0
S1

S2

AEN
IOB
CEN

8288

DEN
DT/ R
IORC

ALE MRDC

MWTC
IOWTC

CLK

Latches Address bus
A

dd bus

Control bus

A0BHE

Memory
WR
RDCS0H CS0L

+ 5V

• Here the only difference between in timing diagram
between minimum mode and maximum mode is the status
signals used and the available control and advanced
command signals.

• R0, S1, S2 are set at the beginning of bus cycle.8288 bus
controller will output a pulse as on the ALE and apply a
required signal to its DT / R pin during T1.

• In T2, 8288 will set DEN=1 thus enabling transceivers, and
for an input it will activate MRDC or IORC. These signals
are activated until T4. For an output, the AMWC or
AIOWC is activated from T2 to T4 and MWTC or IOWC is
activated from T3 to T4.

• The status bit S0 to S2 remains active until T3 and become
passive during T3 and T4.

• If reader input is not activated before T3, wait state will be
inserted between T3 and T4.

• Timings for RQ/ GT Signals :The request/grant response
sequence contains a series of three pulses. The
request/grant pins are checked at each rising pulse of clock
input.

• When a request is detected and if the condition for HOLD
request are satisfied, the processor issues a grant pulse over
the RQ/GT pin immediately during T4 (current) or T1
(next) state.

• When the requesting master receives this pulse, it accepts
the control of the bus, it sends a release pulse to the
processor using RQ/GT pin.

Memory Read Timing in Maximum Mode

T1 T2 T3 T4 T1

One bus cycle

Clk

ALE

S2 – S0 Active Active Inactive

Add/Status S7 – S3BHE, A19 – A16

A15 – A0 D15 – D0
Add/Data

MRDC

DT / R

DEN

Memory Write Timing in Maximum mode.

T1 T2 T3 T4 T1

Clk

One bus cycle

ALE

S2 – S0 Active Active Inactive

ADD/STATUS BHE S7 – S3

A15-A0 Data out D15 – D0ADD/DATA

DEN
DT / R

MWTC or IOWC

AMWC or AIOWC

high

RQ/GT Timings in Maximum Mode.

Clk

RQ / GT

Another master
request bus access

CPU grant bus Master releases bus

M. Krishna Kumar MAM/M7/MKK18/V1/2004 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 2

Contents

General definitions

Overview of 8085 microprocessor

Overview of 8086 microprocessor

Signals and pins of 8086 microprocessor

M. Krishna Kumar MAM/M7/MKK18/V1/2004 3

Overview of
8085 microprocessor

8085 Architecture

• Pin Diagram

• Functional Block Diagram

M. Krishna Kumar MAM/M7/MKK18/V1/2004 4

Pin Diagram of 8085

20

19
18
17
16

15
14

13

12
11

1

2
3
4
5
6
7
8

9
10

21

22
23

24
25
26
27
28
29

30

40
39
38
37
36
35
34
33
32

31

8085 A

VSS

AD7

AD6

AD5

X1
X2

OUT
SOD
SID
TRAP
RST 7.5
RST 6.5
RST 5.5
INTR_____

INTA
AD0

AD1

AD2

AD3

AD4

RESET

A8

Vcc
HOLD
HLDA
CLK (OUT) _________________

RESET IN

S1___

RD

ALE
S0

READY __

IO / M

WR

A9

A10

A11

A15

A14

A13

A12

Serial i/p, o/p signals

DMA

M. Krishna Kumar MAM/M7/MKK18/V1/2004 5

Signal Groups of 8085

Multiplexed address / data bus

GND

VssVcc

+ 5 V

X1 X2

XTAL

4

5

SOD

SID

REST OUT CLK OUT

WR

RD

IO / M

S0

S1

ALE

A8

A15
High order Address bus

AD0

AD7

HLDA

INTA

READY
HOLD ______________

RESET IN

INTR
RESET 5.5
RESET 6.5
RESET 7.5

TRAP

GND

+5V

X1

X2

TIMING AND CONTROL
CLK

GEN

CLK
OUT READY

CONTROL

RD ALE S0 S1 RESET OUTIO / M HOLD HLDA

DMASTATUS

RESET IN

ARITHEMETIC
LOGIC UNIT (ALU)

(8)

ACCUMULATOR TEMP REG (8)

(8)

FLAG
(5)

FLIP FLOPS

INTERRUPT CONTROL SERIAL I / O CONTROL

SID SIOTRAP

INTR

INTA RES

5 . 5

RES

6 . 5

RES

7 . 5

8 BIT INTERNAL
DATA BUS

INSTRUCTION
REGISTER (8)

MULTIPLXER

R

E

G
.

S

E

L

E

C

T

ADDRESS BUFFER
(8)

DATA / ADDRESS
BUFFER
(8)

INSTRUCTION
DECODER
AND MACHINE
ENCODING

W (8)

TEMP . REG.
B REG (8)

D REG (8)

H REG (
8)
STACK POINTER

PROGRAM COUNTER (16)

INCREAMENT / DECREAMENT ADDRESS
LATCH (16)

(16)

AD7 – AD0 ADDRESS / BUFFER
BUS

A 15 – A8
ADDRESS BUS

C REG (8)

E REG (8)

L REG (8)

WR

M. Krishna Kumar MAM/M7/MKK18/V1/2004 7

CYPACS Z

D0D1D2D3D4D5D6D7

Flag Registers

General Purpose Registers
INDIVIDUAL

COMBININATON

B, C, D, E, H, L

B & C, D & E, H & L

M. Krishna Kumar MAM/M7/MKK18/V1/2004 8

Overview of
8086 Microprocessor

8086 Architecture

• Pin Diagram

• Functional Block Diagram

AH AL

BH BL

CH CL

DH DL

SP

BP

SI

DI

ES

CS

SS

DS

IP

1

∑
ADDRESS BUS

(20)
BITS

DATA BUS

(16)
BITS

BUS

CONTRO
L LOGIC

8

0

8

6

B
U
S

2 3 4 65

INSTRUCTION QUEUE

8 BIT

Q BUS

EU
CONTROL
SYSTEM

ALU DATA BUS

16 BITS

TEMPORARY REGISTERS

ALU

FLAGS

GENERAL
REGISTERS

EXECUTION UNIT (EU)

BUS INTERFACE UNIT (BIU)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 10

20

19
18
17
16

15
14

13

12
11

1

2
3
4
5
6
7
8

9
10

21

22
23

24
25
26
27
28
29

30

40
39
38
37
36
35
34
33
32

31

8086

CPU

GND

CLK

INTR

NMI

GND
AD14

AD13

AD12

AD11

AD10

AD9
AD8
AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

RESET

VCC

AD15

A16 / S3

A17 / S4

MN/MX

RD

LOCK

A19/S6

(WR)

READY

TEST

QS1

S2___

S1 _____

(DEN)
(ALE)

A18 / S5

BHE / S7

_____ _____

RQ / GT0 (HOLD)___ _____

RQ / GT1 (HLDA)

(M / IO)___

(DT / R)

S0 QS0 ________

(INTA)

Pin Diagram of 8086

11CLK

GNDVCC

8086

MPU

INTR

INTA

TEST

NMI

RESET

HOLD

HLDA

VCC

MN / MX

INTERRUPT

INTERFACE

DMA

INTERFACE

MODE
SELECT READY

DEN

WR

RD

__

DT / R

__

M / IO

ALE

BHE / S7

MEMORY
I / O

CONTROLS

D0 - D15

A0 - A15, A16 / S3 – A19/S6

ADDRESS / DATA BUS

M. Krishna Kumar MAM/M7/MKK18/V1/2004 12

Signal Description of 8086

• The Microprocessor 8086 is a 16-bit CPU available in
different clock rates and packaged in a 40 pin CERDIP or
plastic package.

• The 8086 operates in single processor or multiprocessor
configuration to achieve high performance. The pins serve a
particular function in minimum mode (single processor mode)
and other function in maximum mode configuration
(multiprocessor mode).

• The 8086 signals can be categorised in three groups. The first
are the signal having common functions in minimum as well
as maximum mode.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 13

• The second are the signals which have special functions for
minimum mode and third are the signals having special
functions for maximum mode.

• The following signal descriptions are common for both modes.
• AD15-AD0 : These are the time multiplexed memory I/O

address and data lines.
• Address remains on the lines during T1 state, while the data is

available on the data bus during T2, T3, Tw and T4.
• These lines are active high and float to a tristate during

interrupt acknowledge and local bus hold acknowledge cycles.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 14

• A19/S6,A18/S5,A17/S4,A16/S3 : These are the time multiplexed
address and status lines.

• During T1 these are the most significant address lines for
memory operations.

• During I/O operations, these lines are low. During memory or
I/O operations, status information is available on those lines
for T2,T3,Tw and T4.

• The status of the interrupt enable flag bit is updated at the
beginning of each clock cycle.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 15

• The S4 and S3 combinedly indicate which segment register is
presently being used for memory accesses as in below fig.

• These lines float to tri-state off during the local bus hold
acknowledge. The status line S6 is always low .

• The address bit are separated from the status bit using latches
controlled by the ALE signal.

Alternate Data
Stack

Code or none
Data

Indication S4 S3

0
0
1
1

0

0
1

1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 16

Upper byte from or to odd address
Whole word0

0
1

0

0
1

Lower byte from or to even address
Upper byte from or to even address

• BHE/S7 : The bus high enable is used to indicate the transfer
of data over the higher order (D15-D8) data bus as shown in
table. It goes low for the data transfer over D15-D8 and is used
to derive chip selects of odd address memory bank or
peripherals. BHE is low during T1 for read, write and interrupt
acknowledge cycles, whenever a byte is to be transferred on
higher byte of data bus. The status information is available
during T2, T3 and T4. The signal is active low and tristated
during hold. It is low during T1 for the first pulse of the
interrupt acknowledge cycle.

None

Indication BHE A0

1 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 17

• RD – Read : This signal on low indicates the peripheral that
the processor is performing s memory or I/O read operation.
RD is active low and shows the state for T2, T3, Tw of any read
cycle. The signal remains tristated during the hold
acknowledge.

• READY : This is the acknowledgement from the slow device
or memory that they have completed the data transfer. The
signal made available by the devices is synchronized by the
8284A clock generator to provide ready input to the 8086. the
signal is active high.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 18

• INTR-Interrupt Request : This is a triggered input. This is
sampled during the last clock cycles of each instruction to
determine the availability of the request. If any interrupt
request is pending, the processor enters the interrupt
acknowledge cycle.

• This can be internally masked by resulting the interrupt enable
flag. This signal is active high and internally synchronized.

• TEST : This input is examined by a ‘WAIT’ instruction. If the
TEST pin goes low, execution will continue, else the processor
remains in an idle state. The input is synchronized internally
during each clock cycle on leading edge of clock.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 19

• NMI- Nonmaskable interrupt : This is an edge triggered
input which causes a Type 2 interrupt. The NMI is not
maskable internally by software. A transition from low to high
initiates the interrupt response at the end of the current
instruction. This input is internally synchronized.

• RESET : This input causes the processor to terminate the
current activity and start execution from FFF0H. The signal is
active high and must be active for at least four clock cycles. It
restarts execution when the RESET returns low. RESET is
also internally synchronized.

• Vcc +5V power supply for the operation of the internal circuit.
• GND ground for internal circuit.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 20

• CLK- Clock Input : The clock input provides the basic timing
for processor operation and bus control activity. Its an
asymmetric square wave with 33% duty cycle.

• MN/MX : The logic level at this pin decides whether the
processor is to operate in either minimum or maximum mode.

• The following pin functions are for the minimum mode
operation of 8086.

• M/IO – Memory/IO : This is a status line logically equivalent
to S2 in maximum mode. When it is low, it indicates the CPU
is having an I/O operation, and when it is high, it indicates that
the CPU is having a memory operation. This line becomes
active high in the previous T4 and remains active till final T4 of
the current cycle. It is tristated during local bus “hold
acknowledge “.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 21

• INTA – Interrupt Acknowledge : This signal is used as a
read strobe for interrupt acknowledge cycles. i.e. when it goes
low, the processor has accepted the interrupt.

• ALE – Address Latch Enable : This output signal indicates
the availability of the valid address on the address/data lines,
and is connected to latch enable input of latches. This signal is
active high and is never tristated.

• DT/R – Data Transmit/Receive: This output is used to decide
the direction of data flow through the transreceivers
(bidirectional buffers). When the processor sends out data, this
signal is high and when the processor is receiving data, this
signal is low.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 22

• DEN – Data Enable : This signal indicates the availability of
valid data over the address/data lines. It is used to enable the
transreceivers (bidirectional buffers) to separate the data from
the multiplexed address/data signal. It is active from the
middle of T2 until the middle of T4. This is tristated during ‘
hold acknowledge’ cycle.

• HOLD, HLDA- Acknowledge : When the HOLD line goes
high, it indicates to the processor that another master is
requesting the bus access.

• The processor, after receiving the HOLD request, issues the
hold acknowledge signal on HLDA pin, in the middle of the
next clock cycle after completing the current bus cycle.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 23

• At the same time, the processor floats the local bus and
control lines. When the processor detects the HOLD line
low, it lowers the HLDA signal. HOLD is an asynchronous
input, and is should be externally synchronized.

• If the DMA request is made while the CPU is performing a
memory or I/O cycle, it will release the local bus during T4
provided :

1. The request occurs on or before T2 state of the current cycle.
2. The current cycle is not operating over the lower byte of a

word.
3. The current cycle is not the first acknowledge of an interrupt

acknowledge sequence.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 24

4. A Lock instruction is not being executed.
• The following pin function are applicable for maximum

mode operation of 8086.
• S2, S1, S0 – Status Lines : These are the status lines which

reflect the type of operation, being carried out by the
processor. These become activity during T4 of the previous
cycle and active during T1 and T2 of the current bus cycles.

1 1

S2 S1 S0 Indication
0

1

0
0
0

1
1
1

1

1
1

1

1

1

0
0 0

0

0

0
0
0

Interrupt Acknowledge
Read I/O port
Write I/O port
Halt
Code Access

Passive
Write memory
Read memory

1 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 25

• LOCK : This output pin indicates that other system bus master
will be prevented from gaining the system bus, while the
LOCK signal is low.

• The LOCK signal is activated by the ‘LOCK’ prefix
instruction and remains active until the completion of the next
instruction. When the CPU is executing a critical instruction
which requires the system bus, the LOCK prefix instruction
ensures that other processors connected in the system will not
gain the control of the bus.

• The 8086, while executing the prefixed instruction, asserts the
bus lock signal output, which may be connected to an external
bus controller.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 26

• QS1, QS0 – Queue Status: These lines give information about
the status of the code-prefetch queue. These are active during
the CLK cycle after while the queue operation is performed.

• This modification in a simple fetch and execute architecture of
a conventional microprocessor offers an added advantage of
pipelined processing of the instructions.

• The 8086 architecture has 6-byte instruction prefetch queue.
Thus even the largest (6-bytes) instruction can be prefetched
from the memory and stored in the prefetch. This results in a
faster execution of the instructions.

• In 8085 an instruction is fetched, decoded and executed and
only after the execution of this instruction, the next one is
fetched.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 27

• By prefetching the instruction, there is a considerable speeding
up in instruction execution in 8086. This is known as
instruction pipelining.

• At the starting the CS:IP is loaded with the required address
from which the execution is to be started. Initially, the queue
will be empty an the microprocessor starts a fetch operation to
bring one byte (the first byte) of instruction code, if the CS:IP
address is odd or two bytes at a time, if the CS:IP address is
even.

• The first byte is a complete opcode in case of some instruction
(one byte opcode instruction) and is a part of opcode, in case
of some instructions (two byte opcode instructions), the
remaining part of code lie in second byte.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 28

• But the first byte of an instruction is an opcode. When the first
byte from the queue goes for decoding and interpretation, one
byte in the queue becomes empty and subsequently the queue
is updated.

• The microprocessor does not perform the next fetch operation
till at least two bytes of instruction queue are emptied. The
instruction execution cycle is never broken for fetch operation.
After decoding the first byte, the decoding circuit decides
whether the instruction is of single opcode byte or double
opcode byte.

• If it is single opcode byte, the next bytes are treated as data
bytes depending upon the decoded instruction length,
otherwise, the next byte in the queue is treated as the second
byte of the instruction opcode.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 29

• The second byte is then decoded in continuation with the first
byte to decide the instruction length and the number of
subsequent bytes to be treated as instruction data.

• The queue is updated after every byte is read from the queue
but the fetch cycle is initiated by BIU only if at least two bytes
of the queue are empty and the EU may be concurrently
executing the fetched instructions.

• The next byte after the instruction is completed is again the
first opcode byte of the next instruction. A similar procedure is
repeated till the complete execution of the program.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 30

• The fetch operation of the next instruction is overlapped with
the execution of the current instruction. As in the architecture,
there are two separate units, namely Execution unit and Bus
interface unit.

• While the execution unit is busy in executing an instruction,
after it is completely decoded, the bus interface unit may be
fetching the bytes of the next instruction from memory,
depending upon the queue status.

QS1 QS0 Indication
0

1 1
1

1
0

0
0

No operation
First byte of the opcode from the queue
Empty queue
Subsequent byte from the queue

M. Krishna Kumar MAM/M7/MKK18/V1/2004 31

• RQ/GT0, RQ/GT1 – Request/Grant : These pins are used
by the other local bus master in maximum mode, to force the
processor to release the local bus at the end of the processor
current bus cycle.

• Each of the pin is bidirectional with RQ/GT0 having higher
priority than RQ/GT1.

• RQ/GT pins have internal pull-up resistors and may be left
unconnected.

• Request/Grant sequence is as follows:
1. A pulse of one clock wide from another bus master requests

the bus access to 8086.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 32

2. During T4(current) or T1(next) clock cycle, a pulse one clock
wide from 8086 to the requesting master, indicates that the
8086 has allowed the local bus to float and that it will enter
the ‘hold acknowledge’ state at next cycle. The CPU bus
interface unit is likely to be disconnected from the local bus
of the system.

3. A one clock wide pulse from the another master indicates to
the 8086 that the hold request is about to end and the 8086
may regain control of the local bus at the next clock cycle.
Thus each master to master exchange of the local bus is a
sequence of 3 pulses. There must be at least one dead clock
cycle after each bus exchange.

• The request and grant pulses are active low.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 33

• For the bus request those are received while 8086 is
performing memory or I/O cycle, the granting of the bus is
governed by the rules as in case of HOLD and HLDA in
minimum mode.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 34

General Bus Operation

• The 8086 has a combined address and data bus commonly
referred as a time multiplexed address and data bus.

• The main reason behind multiplexing address and data over
the same pins is the maximum utilisation of processor pins and
it facilitates the use of 40 pin standard DIP package.

• The bus can be demultiplexed using a few latches and
transreceivers, when ever required.

• Basically, all the processor bus cycles consist of at least four
clock cycles. These are referred to as T1, T2, T3, T4. The
address is transmitted by the processor during T1. It is present
on the bus only for one cycle.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 35

• During T2, i.e. the next cycle, the bus is tristated for changing
the direction of bus for the following data read cycle. The data
transfer takes place during T3, T4.

• In case, an address device is slow ‘NOT READY’ status the
wait status Tw are inserted between T3 and T4. These clock
states during wait period are called idle states (Ti), wait states
(Tw) or inactive states. The processor used these cycles for
internal housekeeping.

• The address latch enable (ALE) signal is emitted during T1 by
the processor (minimum mode) or the bus controller
(maximum mode) depending upon the status of the MN/MX
input.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 36

• The negative edge of this ALE pulse is used to separate the
address and the data or status information. In maximum mode,
the status lines S0, S1 and S2 are used to indicate the type of
operation.

• Status bits S3 to S7 are multiplexed with higher order address
bits and the BHE signal. Address is valid during T1 while
status bits S3 to S7 are valid during T2 through T4.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 37
General Bus Operation Cycle in Maximum Mode

CLK

Memory read cycle Memory write cycle
T1 T2 T3 Tw T4 T1 T2 T3 Tw T4

ALE

S2 – S0

Add/stat

WR

DEN

DT/R

READY

RD/INTA

Add/data

A19-A16 S3-S7 A19-A16 S3-S7

BHE BHE

A0-A15 D15-D0 A0-A15 D15-D0

Bus reserve
Data Out D15 – D0

Wait Wait

Ready
Ready

Memory access time

for Data In

8085 Microprocessor

Contents

General definitions

Overview of 8085 microprocessor

Overview of 8086 microprocessor

Signals and pins of 8086 microprocessor

• The salient features of 8085 µp are:

• It is a 8 bit microprocessor.
• It is manufactured with N-MOS technology.
• It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB)

memory locations through A0-A15.
• The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 – AD7.
• Data bus is a group of 8 lines D0 – D7.
• It supports external interrupt request.
• A 16 bit program counter (PC)
• A 16 bit stack pointer (SP)
• Six 8-bit general purpose register arranged in pairs: BC, DE, HL.
• It requires a signal +5V power supply and operates at 3.2 MHZ single phase

clock.
• It is enclosed with 40 pins DIP (Dual in line package).

Overview of 8085 microprocessor

 8085 Architecture

• Pin Diagram

• Functional Block Diagram

Pin Diagram of 8085

Signal Groups of 8085

20

19
18
17
16

15
14

13

12
11

1

2
3
4
5
6
7
8

9
10

21

22
23

24
25
26
27
28
29

30

40
39
38
37
36
35
34
33
32

31

8085 A

VSS

AD7

AD6

AD5

X1

X2

OUT

SOD

SID

TRAP
RST 7.5
RST 6.5
RST 5.5
INTR _____
INTA

AD0

AD1

AD2

AD3

AD4

RESET

A8

Vcc
HOLD

HLDA

CLK (OUT) _________________
RESET IN

S1

RD

ALE

S0

READY __
IO / M

WR

A9

A10

A11

A15

A14

A13

A12

Serial i/p, o/p signals

DMA

GND

VssVcc

+ 5 V

X1 X2

XTAL

4

5

SOD

SID

REST OUT CLK OUT

WR

RD

IO / M

S0

S1

ALE

A8

A15
High order Address bus

AD0

AD7

HLDA

INTA

READY
HOLD ______________

RESET IN

INTR
RESET 5.5
RESET 6.5
RESET 7.5

TRAP

Block Diagram

GND

+5V

X1

X2

TIMING AND CONTROL
CLK
GEN

CLK
OUT READY

CONTRO

R AL S0 S1 RESET IO / M HOLD HLDA

DMASTATUS

RESET

ARITHEMETIC
LOGIC UNIT (

(8)

ACCUMULATO TEMP (8)

(8)

FLAG
(5)
FLIP

INTERRUPT CONTROL SERIAL I / O

SID SIOTRAP

INT

 INTA RES
 5 . 5

RES
 6 . 5

RES
 7 . 5

8 BIT INTERNAL
DATA BUS

INSTRUCTIO
N REGISTER(8)

MULTIPLXER

R
E
G
.
S
E
L
E
C
T

ADDRESS BUFFER
(8)

DATA / ADDRESS
BUFFER
(8)

INSTRUCTIO
N DECODER
AND
MACHINE

W (8)
TEMP .
REGB REG (8)

D REG (8

H REG
(8)
STACK POINTER
PROGRAM COUNTER (

INCREAMENT / DECREAMENT
ADDRESS LATCH (16)

(16)

AD7 – AD0 ADDRESS /
BUFFER BUS

A 15 – A8
ADDRESS

 C REG (

E REG (8

L REG (8

WR

Memory

• Program, data and stack memories occupy the same memory space. The total
addressable memory size is 64 KB.

• Program memory - program can be located anywhere in memory. Jump, branch
and call instructions use 16-bit addresses, i.e. they can be used to jump/branch
anywhere within 64 KB. All jump/branch instructions use absolute addressing.

• Data memory - the processor always uses 16-bit addresses so that data can be
placed anywhere.

• Stack memory is limited only by the size of memory. Stack grows downward.
• First 64 bytes in a zero memory page should be reserved for vectors used by RST

instructions.

Interrupts

• The processor has 5 interrupts. They are presented below in the order of their
priority (from lowest to highest):

• INTR is maskable 8080A compatible interrupt. When the interrupt occurs the
processor fetches from the bus one instruction, usually one of these instructions:

• One of the 8 RST instructions (RST0 - RST7). The processor saves current
program counter into stack and branches to memory location N * 8 (where N
is a 3-bit number from 0 to 7 supplied with the RST instruction).

CY PACS Z

D0D1D2D3D4D5D6D7

Flag Registers

General Purpose Registers
INDIVIDUAL

COMBININATON

B, C, D, E, H, L

B & C, D & E, H & L

• CALL instruction (3 byte instruction). The processor calls the subroutine, address
of which is specified in the second and third bytes of the instruction.

• RST5.5 is a maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 2CH
(hexadecimal) address.

• RST6.5 is a maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 34H
(hexadecimal) address.

• RST7.5 is a maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 3CH
(hexadecimal) address.

• TRAP is a non-maskable interrupt. When this interrupt is received the processor
saves the contents of the PC register into stack and branches to 24H
(hexadecimal) address.

• All maskable interrupts can be enabled or disabled using EI and DI instructions.
RST 5.5, RST6.5 and RST7.5 interrupts can be enabled or disabled individually
using SIM instruction.

Reset Signals

• RESET IN: When this signal goes low, the program counter (PC) is set to Zero,
µp is reset and resets the interrupt enable and HLDA flip-flops.

• The data and address buses and the control lines are 3-stated during RESET and
because of asynchronous nature of RESET, the processor internal registers and
flags may be altered by RESET with unpredictable results.

• RESET IN is a Schmitt-triggered input, allowing connection to an R-C network
for power-on RESET delay.

• Upon power-up, RESET IN must remain low for at least 10 ms after minimum
Vcc has been reached.

• For proper reset operation after the power – up duration, RESET IN should be
kept low a minimum of three clock periods.

• The CPU is held in the reset condition as long as RESET IN is applied. Typical
Power-on RESET RC values R1 = 75KΩ, C1 = 1µF.

• RESET OUT: This signal indicates that µp is being reset. This signal can be used
to reset other devices. The signal is synchronized to the processor clock and lasts
an integral number of clock periods.

Serial communication Signal

• SID - Serial Input Data Line: The data on this line is loaded into accumulator bit

7 whenever a RIM instruction is executed.
• SOD – Serial Output Data Line: The SIM instruction loads the value of bit 7 of

the accumulator into SOD latch if bit 6 (SOE) of the accumulator is 1.

DMA Signals

• HOLD: Indicates that another master is requesting the use of the address and data

buses. The CPU, upon receiving the hold request, will relinquish the use of the
bus as soon as the completion of the current bus transfer.

• Internal processing can continue. The processor can regain the bus only after the
HOLD is removed.

• When the HOLD is acknowledged, the Address, Data RD, WR and IO/M lines are
3-stated.

• HLDA: Hold Acknowledge: Indicates that the CPU has received the HOLD
request and that it will relinquish the bus in the next clock cycle.

• HLDA goes low after the Hold request is removed. The CPU takes the bus one
half-clock cycle after HLDA goes low.

• READY: This signal Synchronizes the fast CPU and the slow memory,
peripherals.

• If READY is high during a read or write cycle, it indicates that the memory or
peripheral is ready to send or receive data.

• If READY is low, the CPU will wait an integral number of clock cycle for
READY to go high before completing the read or write cycle.

• READY must conform to specified setup and hold times.

Registers

• Accumulator or A register is an 8-bit register used for arithmetic, logic, I/O and

load/store operations.
• Flag Register has five 1-bit flags.
• Sign - set if the most significant bit of the result is set.
• Zero - set if the result is zero.
• Auxiliary carry - set if there was a carry out from bit 3 to bit 4 of the result.
• Parity - set if the parity (the number of set bits in the result) is even.
• Carry - set if there was a carry during addition, or borrow during

subtraction/comparison/rotation.

General Registers

• 8-bit B and 8-bit C registers can be used as one 16-bit BC register pair. When

used as a pair the C register contains low-order byte. Some instructions may use
BC register as a data pointer.

• 8-bit D and 8-bit E registers can be used as one 16-bit DE register pair. When
used as a pair the E register contains low-order byte. Some instructions may use
DE register as a data pointer.

• 8-bit H and 8-bit L registers can be used as one 16-bit HL register pair. When
used as a pair the L register contains low-order byte. HL register usually contains
a data pointer used to reference memory addresses.

• Stack pointer is a 16 bit register. This register is always
decremented/incremented by 2 during push and pop.

• Program counter is a 16-bit register.

Instruction Set

• 8085 instruction set consists of the following instructions:
• Data moving instructions.
• Arithmetic - add, subtract, increment and decrement.
• Logic - AND, OR, XOR and rotate.
• Control transfer - conditional, unconditional, call subroutine, return from

subroutine and restarts.
• Input/Output instructions.
• Other - setting/clearing flag bits, enabling/disabling interrupts, stack operations,

etc.

Addressing mode

• Register - references the data in a register or in a register pair.
Register indirect - instruction specifies register pair containing address, where
the data is located.
Direct, Immediate - 8 or 16-bit data.

8086 Microprocessor

•It is a 16-bit µp.
•8086 has a 20 bit address bus can access up to 220 memory locations (1 MB) .
•It can support up to 64K I/O ports.
•It provides 14, 16 -bit registers.
•It has multiplexed address and data bus AD0- AD15 and A16 – A19.
•It requires single phase clock with 33% duty cycle to provide internal timing.
•8086 is designed to operate in two modes, Minimum and Maximum.
•It can prefetches upto 6 instruction bytes from memory and queues them in order to
speed up instruction execution.
•It requires +5V power supply.
•A 40 pin dual in line package
Minimum and Maximum Modes:
•The minimum mode is selected by applying logic 1 to the MN / MX# input pin. This is a
single microprocessor configuration.
• The maximum mode is selected by applying logic 0 to the MN / MX# input pin. This is
a multi micro processors configuration.

Pin Diagram of 8086

20

19
18
17
16

15
14

13

12
11

1

2
3
4
5
6
7
8

9
10

21

22
23

24
25
26
27
28
29

30

40
39
38
37
36
35
34
33
32

31

8086
CPU

GND

CLK

INTR

NMI

GND

AD14

AD13

AD12

AD11

AD10

AD9

AD8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

RESET

VCC

AD15

A16 / S3

A17 / S4

MN/MX

RD

LOCK

A19/S6

(WR)

READY

TEST

QS1

S2 ___

S1

(DEN)

(ALE)

A18 / S5

BHE / S7

_____ _____
RQ / GT0 (HOLD) ___ _____

RQ / GT1 (HLDA)

(M / IO) ___

(DT / R)

S0

QS0 ________
(INTA)

Signal Groups of 8086

CLK

GND VCC

8086
MPU

INTR

 INTA

TEST

NMI

RESET

HOLD

HLDA

VCC

MN / MX

INTERRUPT
INTERFACE

DMA
INTERFACE

MODE
SELECT READY

DEN

WR

RD

 __
DT / R

 __
M / IO

ALE

BHE / S7

MEMORY
I / O
CONTROLS

D0 - D15

A0 - A15, A16 / S3 – A19/S6

ADDRESS / DATA BUS

 Block Diagram of 8086

Internal Architecture of 8086

•8086 has two blocks BIU and EU.
•The BIU performs all bus operations such as instruction fetching, reading and writing
operands for memory and calculating the addresses of the memory operands. The
instruction bytes are transferred to the instruction queue.
•EU executes instructions from the instruction system byte queue.
•Both units operate asynchronously to give the 8086 an overlapping instruction fetch and
execution mechanism which is called as Pipelining. This results in efficient use of the
system bus and system performance.
•BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.
•EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register,
Flag register.

•BUS INTERFACR UNIT:

• It provides a full 16 bit bidirectional data bus and 20 bit address bus.
•The bus interface unit is responsible for performing all external bus operations.
Specifically it has the following functions:

AH AL
BH BL
CH CL
DH DL

SP
BP
SI
DI

ES
CS
SS
DS
IP

1

∑
ADDRESS

(20)
BITS

DATA BUS

(16)
BITS

BUS

CONTR
OL

8
0
8
6
B
U
S

2 3 4 6 5

INSTRUCTION

8 BIT

Q

EU
CONTRO
L

ALU DATA

16 BITS

TEMPORARY

ALU

FLAGS

GENERAL
REGISTERS

EXECUTION UNIT (EU)
BUS INTERFACE UNIT (BIU)

•Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and
Bus control.
•The BIU uses a mechanism known as an instruction stream queue to implement a
pipeline architecture.
•This queue permits prefetch of up to six bytes of instruction code. When ever the queue
of the BIU is not full, it has room for at least two more bytes and at the same time the EU
is not requesting it to read or write operands from memory, the BIU is free to look ahead
in the program by prefetching the next sequential instruction.
•These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the
BIU fetches two instruction bytes in a single memory cycle.
•After a byte is loaded at the input end of the queue, it automatically shifts up through the
FIFO to the empty location nearest the output.
•The EU accesses the queue from the output end. It reads one instruction byte after the
other from the output of the queue. If the queue is full and the EU is not requesting
access to operand in memory.
•These intervals of no bus activity, which may occur between bus cycles are known as
Idle state.
•If the BIU is already in the process of fetching an instruction when the EU request it to
read or write operands from memory or I/O, the BIU first completes the instruction fetch
bus cycle before initiating the operand read / write cycle.
•The BIU also contains a dedicated adder which is used to generate the 20bit physical
address that is output on the address bus. This address is formed by adding an appended
16 bit segment address and a 16 bit offset address.
•For example: The physical address of the next instruction to be fetched is formed by
combining the current contents of the code segment CS register and the current contents
of the instruction pointer IP register.
•The BIU is also responsible for generating bus control signals such as those for memory
read or write and I/O read or write.

•EXECUTION UNIT

 The Execution unit is responsible for decoding and executing all instructions.
•The EU extracts instructions from the top of the queue in the BIU, decodes them,
generates operands if necessary, passes them to the BIU and requests it to perform the
read or write bys cycles to memory or I/O and perform the operation specified by the
instruction on the operands.
•During the execution of the instruction, the EU tests the status and control flags and
updates them based on the results of executing the instruction.
•If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted
to top of the queue.
•When the EU executes a branch or jump instruction, it transfers control to a location
corresponding to another set of sequential instructions.
•Whenever this happens, the BIU automatically resets the queue and then begins to fetch
instructions from this new location to refill the queue.

Signal Description of 8086

•The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged
in a 40 pin CERDIP or plastic package.
•The 8086 operates in single processor or multiprocessor configuration to achieve high
performance. The pins serve a particular function in minimum mode (single processor
mode) and other function in maximum mode configuration (multiprocessor mode).
•The 8086 signals can be categorised in three groups. The first are the signal having
common functions in minimum as well as maximum mode.
•The second are the signals which have special functions for minimum mode and third
are the signals having special functions for maximum mode.
•The following signal descriptions are common for both modes.
•AD15-AD0 : These are the time multiplexed memory I/O address and data lines.
• Address remains on the lines during T1 state, while the data is available on the data bus
during T2, T3, Tw and T4.
• These lines are active high and float to a tristate during interrupt acknowledge and local
bus hold acknowledge cycles.
•A19/S6,A18/S5,A17/S4,A16/S3 : These are the time multiplexed address and status lines.
• During T1 these are the most significant address lines for memory operations.
•During I/O operations, these lines are low. During memory or I/O operations, status
information is available on those lines for T2,T3,Tw and T4.
• The status of the interrupt enable flag bit is updated at the beginning of each clock
cycle.
•The S4 and S3 combinedly indicate which segment register is presently being used for
memory accesses as in below fig.
•These lines float to tri-state off during the local bus hold acknowledge. The status line S6
is always low .
•The address bit are separated from the status bit using latches controlled by the ALE
signal.

Alternate Data
Stack

Code or none
Data

Indication S4 S3

0
0
1
1

0

0
1

1

•BHE/S7 : The bus high enable is used to indicate the transfer of data over the higher
order (D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8
and is used to derive chip selects of odd address memory bank or peripherals. BHE is low
during T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be
transferred on higher byte of data bus. The status information is available during T2, T3
and T4. The signal is active low and tristated during hold. It is low during T1 for the first
pulse of the interrupt acknowledge cycle.

•RD – Read : This signal on low indicates the peripheral that the processor is performing
s memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of
any read cycle. The signal remains tristated during the hold acknowledge.
•READY : This is the acknowledgement from the slow device or memory that they have
completed the data transfer. The signal made available by the devices is synchronized by
the 8284A clock generator to provide ready input to the 8086. the signal is active high.

•INTR-Interrupt Request : This is a triggered input. This is sampled during the last
clock cycles of each instruction to determine the availability of the request. If any
interrupt request is pending, the processor enters the interrupt acknowledge cycle.
•This can be internally masked by resulting the interrupt enable flag. This signal is active
high and internally synchronized.
•TEST : This input is examined by a ‘WAIT’ instruction. If the TEST pin goes low,
execution will continue, else the processor remains in an idle state. The input is
synchronized internally during each clock cycle on leading edge of clock.

•CLK- Clock Input : The clock input provides the basic timing for processor operation
and bus control activity. Its an asymmetric square wave with 33% duty cycle.
•MN/MX : The logic level at this pin decides whether the processor is to operate in either
minimum or maximum mode.

•The following pin functions are for the minimum mode operation of 8086.

•M/IO – Memory/IO : This is a status line logically equivalent to S2 in maximum mode.
When it is low, it indicates the CPU is having an I/O operation, and when it is high, it
indicates that the CPU is having a memory operation. This line becomes active high in

Upper byte from or to odd address
Whole word 0

0
1

0

0
1

Lower byte from or to even address
Upper byte from or to even address

the previous T4 and remains active till final T4 of the current cycle. It is tristated during
local bus “hold acknowledge “.

•INTA – Interrupt Acknowledge : This signal is used as a read strobe for interrupt
acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.
•ALE – Address Latch Enable : This output signal indicates the availability of the valid
address on the address/data lines, and is connected to latch enable input of latches. This
signal is active high and is never tristated.
•DT/R – Data Transmit/Receive: This output is used to decide the direction of data flow
through the transreceivers (bidirectional buffers). When the processor sends out data, this
signal is high and when the processor is receiving data, this signal is low.

•DEN – Data Enable : This signal indicates the availability of valid data over the
address/data lines. It is used to enable the transreceivers (bidirectional buffers) to
separate the data from the multiplexed address/data signal. It is active from the middle of
T2 until the middle of T4. This is tristated during ‘ hold acknowledge’ cycle.
•HOLD, HLDA- Acknowledge : When the HOLD line goes high, it indicates to the
processor that another master is requesting the bus access.
•The processor, after receiving the HOLD request, issues the hold acknowledge signal on
HLDA pin, in the middle of the next clock cycle after completing the current bus cycle.

•At the same time, the processor floats the local bus and control lines. When the
processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an
asynchronous input, and is should be externally synchronized.
•If the DMA request is made while the CPU is performing a memory or I/O cycle, it will
release the local bus during T4 provided :
1.The request occurs on or before T2 state of the current cycle.
2.The current cycle is not operating over the lower byte of a word.
3.The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

•The following pin function are applicable for maximum mode operation of 8086.

•S2, S1, S0 – Status Lines : These are the status lines which reflect the type of operation,
being carried out by the processor. These become activity during T4 of the previous cycle
and active during T1 and T2 of the current bus cycles.

•LOCK : This output pin indicates that other system bus master will be prevented from
gaining the system bus, while the LOCK signal is low.
•The LOCK signal is activated by the ‘LOCK’ prefix instruction and remains active until
the completion of the next instruction. When the CPU is executing a critical instruction
which requires the system bus, the LOCK prefix instruction ensures that other processors
connected in the system will not gain the control of the bus.
• The 8086, while executing the prefixed instruction, asserts the bus lock signal output,
which may be connected to an external bus controller.

•By prefetching the instruction, there is a considerable speeding up in instruction
execution in 8086. This is known as instruction pipelining.
•At the starting the CS:IP is loaded with the required address from which the execution is
to be started. Initially, the queue will be empty an the microprocessor starts a fetch
operation to bring one byte (the first byte) of instruction code, if the CS:IP address is odd
or two bytes at a time, if the CS:IP address is even.
•The first byte is a complete opcode in case of some instruction (one byte opcode
instruction) and is a part of opcode, in case of some instructions (two byte opcode
instructions), the remaining part of code lie in second byte.
•The second byte is then decoded in continuation with the first byte to decide the
instruction length and the number of subsequent bytes to be treated as instruction data.
•The queue is updated after every byte is read from the queue but the fetch cycle is
initiated by BIU only if at least two bytes of the queue are empty and the EU may be
concurrently executing the fetched instructions.
•The next byte after the instruction is completed is again the first opcode byte of the next
instruction. A similar procedure is repeated till the complete execution of the program.

1 1

S2 S1 S0 Indication
0

1

0
0
0

1
1
1

1

1
1

1

1

1

0
0 0

0

0

0
0
0

Interrupt Acknowledge
Read I/O port
Write I/O port
Halt
Code Access

Passive
Write memory
Read memory

1 1

•The fetch operation of the next instruction is overlapped with the execution of the
current instruction. As in the architecture, there are two separate units, namely Execution
unit and Bus interface unit.
•While the execution unit is busy in executing an instruction, after it is completely
decoded, the bus interface unit may be fetching the bytes of the next instruction from
memory, depending upon the queue status.

•RQ/GT0, RQ/GT1 – Request/Grant : These pins are used by the other local bus master
in maximum mode, to force the processor to release the local bus at the end of the
processor current bus cycle.
•Each of the pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1.
•RQ/GT pins have internal pull-up resistors and may be left unconnected.
•Request/Grant sequence is as follows:
1.A pulse of one clock wide from another bus master requests the bus access to 8086.
2.During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to the
requesting master, indicates that the 8086 has allowed the local bus to float and that it
will enter the ‘hold acknowledge’ state at next cycle. The CPU bus interface unit is likely
to be disconnected from the local bus of the system.
3.A one clock wide pulse from the another master indicates to the 8086 that the hold
request is about to end and the 8086 may regain control of the local bus at the next clock
cycle. Thus each master to master exchange of the local bus is a sequence of 3 pulses.
There must be at least one dead clock cycle after each bus exchange.
•The request and grant pulses are active low.
•For the bus request those are received while 8086 is performing memory or I/O cycle,
the granting of the bus is governed by the rules as in case of HOLD and HLDA in
minimum mode.

General Bus Operation

•The 8086 has a combined address and data bus commonly referred as a time multiplexed
address and data bus.

QS1 QS0 Indication
0

1 1
1

1
0

0
0

No operation
First byte of the opcode from the queue
Empty queue
Subsequent byte from the queue

• The main reason behind multiplexing address and data over the same pins is the
maximum utilisation of processor pins and it facilitates the use of 40 pin standard DIP
package.
•The bus can be demultiplexed using a few latches and transreceivers, when ever
required.
•Basically, all the processor bus cycles consist of at least four clock cycles. These are
referred to as T1, T2, T3, T4. The address is transmitted by the processor during T1. It is
present on the bus only for one cycle.
•The negative edge of this ALE pulse is used to separate the address and the data or status
information. In maximum mode, the status lines S0, S1 and S2 are used to indicate the
type of operation.
•Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal.
Address is valid during T1 while status bits S3 to S7 are valid during T2 through T4.

Minimum Mode 8086 System

•In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum
mode by strapping its MN/MX pin to logic 1.
•In this mode, all the control signals are given out by the microprocessor chip itself.
There is a single microprocessor in the minimum mode system.

General Bus Operation Cycle in Maximum Mode

CLK

Memory read cycle Memory write cycle
T1 T2 T3 Tw T4 T1 T2 T3 Tw T4

ALE

S2 – S0

Add/stat

WR

DEN

DT/R

READY

RD/INTA

Add/data

A19-A16 S3-S7 A19-A16 S3-S7

BHE BHE

A0-A15 D15-D0 A0-A15 D15-D0

Bus reserve
Data Out D15 – D0

Wait Wait

Ready
Ready

Memory access time

for Data In

•The remaining components in the system are latches, transreceivers, clock generator,
memory and I/O devices. Some type of chip selection logic may be required for selecting
memory or I/O devices, depending upon the address map of the system.
•Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are
used for separating the valid address from the multiplexed address/data signals and are
controlled by the ALE signal generated by 8086.
•Transreceivers are the bidirectional buffers and some times they are called as data
amplifiers. They are required to separate the valid data from the time multiplexed
address/data signals.
•They are controlled by two signals namely, DEN and DT/R.
•The DEN signal indicates the direction of data, i.e. from or to the processor. The system
contains memory for the monitor and users program storage.
•Usually, EPROM are used for monitor storage, while RAM for users program storage. A
system may contain I/O devices.
•
•The working of the minimum mode configuration system can be better described in
terms of the timing diagrams rather than qualitatively describing the operations.
•The opcode fetch and read cycles are similar. Hence the timing diagram can be
categorized in two parts, the first is the timing diagram for read cycle and the second is
the timing diagram for write cycle.
•The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and
also M / IO signal. During the negative going edge of this signal, the valid address is
latched on the local bus.
•The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO
signal indicates a memory or I/O operation.
•At T2, the address is removed from the local bus and is sent to the output. The bus is
then tristated. The read (RD) control signal is also activated in T2.
•The read (RD) signal causes the address device to enable its data bus drivers. After RD
goes low, the valid data is available on the data bus.
•The addressed device will drive the READY line high. When the processor returns the
read signal to high level, the addressed device will again tristate its bus drivers.
•A write cycle also begins with the assertion of ALE and the emission of the address. The
M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after sending
the address in T1, the processor sends the data to be written to the addressed location.
•The data remains on the bus until middle of T4 state. The WR becomes active at the
beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).
•The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O
word to be read or write.
•The M/IO, RD and WR signals indicate the type of data transfer as specified in table
below.

•Hold Response sequence: The HOLD pin is checked at leading edge of each clock
pulse. If it is received active by the processor before T4 of the previous cycle or during T1
state of the current cycle, the CPU activates HLDA in the next clock cycle and for
succeeding bus cycles, the bus will be given to another requesting master.
•The control of the bus is not regained by the processor until the requesting master does
not drop the HOLD pin low. When the request is dropped by the requesting master, the
HLDA is dropped by the processor at the trailing edge of the next clock.

T1 T2 T3 TW T4

Clk

T1

ALE

DT / R

DEN

WR

ADD / DATA A15 – A0 Valid data D15 – D0

S7 – S3A19 – A16
BHE ADD / STATUS

Write Cycle Timing Diagram for Minimum Mode

Maximum Mode 8086 System

•In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.
•In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus
controller derives the control signal using this status information .
•In the maximum mode, there may be more than one microprocessor in the system
configuration.
•The components in the system are same as in the minimum mode system.
•The basic function of the bus controller chip IC8288, is to derive control signals like RD
and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by
the processor on the status lines.
•The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are
driven by CPU.
•It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and
AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.
•
•AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance
of the MCE/PDEN output depends upon the status of the IOB pin.
•If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it
acts as peripheral data enable used in the multiple bus configurations.
•INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to
an interrupting device.
•IORC, IOWC are I/O read command and I/O write command signals respectively .
These signals enable an IO interface to read or write the data from or to the address port.

Clk

Bus Request and Bus Grant Timings in Minimum Mode System

HOLD

HLDA

•The MRDC, MWTC are memory read command and memory write command signals
respectively and may be used as memory read or write signals.
•All these command signals instructs the memory to accept or send data from or to the
bus.
•For both of these write command signals, the advanced signals namely AIOWC and
AMWTC are available.
•Here the only difference between in timing diagram between minimum mode and
maximum mode is the status signals used and the available control and advanced
command signals.

•R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as
on the ALE and apply a required signal to its DT / R pin during T1.
•In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate
MRDC or IORC. These signals are activated until T4. For an output, the AMWC or
AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.
•The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.
•If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Maximum Mode 8086 System.

Reset

RDY

Clk
Generator

8284

Reset
Clk
Ready

8086
AD6-AD15

A16-A19
A/D

DEN G

DIR

DT/R

Data
buffer

Clk

Data bus

Peripheral
CS WR RD

S0

S1

S2

S0

S1

S2

AEN
IOB
CEN

8288

DEN
DT/ R
IORC

AL MRDC

MWTC
IOWT

CLK

Latches Address bus

A
dd
bu

Control bus

A0BHE

Memory
WR
RD CS0H CS0L

+ 5V

•Timings for RQ/ GT Signals :
The request/grant response sequence contains a series of three pulses. The request/grant
pins are checked at each rising pulse of clock input.
•When a request is detected and if the condition for HOLD request are satisfied, the
processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1
(next) state.
•When the requesting master receives this pulse, it accepts the control of the bus, it sends
a release pulse to the processor using RQ/GT pin.

Memory Read Timing in Maximum Mode

T1 T2 T3 T4 T1

One bus cycle

Clk

ALE

S2 – S0 Active Active Inactive

Add/Status S7 – S3BHE, A19 – A16

A15 – A0 D15 – D0Add/Data

MRDC

DT / R

DEN

 Memory Write Timing in Maximum mode.

T1 T2 T3 T4 T1

Clk

One bus cycle

ALE

S2 – S0 Active Active Inactive

ADD/STATUS BHE S7 – S3

A15-A0 Data out D15 – D0ADD/DATA

DEN
DT / R

MWTC or IOWC

AMWC or AIOWC

high

Minimum Mode Interface

•When the Minimum mode operation is selected, the 8086 provides all control signals
needed to implement the memory and I/O interface.
•The minimum mode signal can be divided into the following basic groups : address/data
bus, status, control, interrupt and DMA.
•Address/Data Bus : these lines serve two functions. As an address bus is 20 bits long
and consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A 20bit
address gives the 8086 a 1Mbyte memory address space. More over it has an independent
I/O address space which is 64K bytes in length.
•The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0
through A15 respectively. By multiplexed we mean that the bus work as an address bus
during first machine cycle and as a data bus during next machine cycles. D15 is the MSB
and D0 LSB.
•When acting as a data bus, they carry read/write data for memory, input/output data for
I/O devices, and interrupt type codes from an interrupt controller.

RQ/GT Timings in Maximum Mode.

Clk

RQ / GT

Another master
request bus access

CPU grant bus Master releases

•Status signal:

The four most significant address lines A19 through A16 are also multiplexed but in this
case with status signals S6 through S3. These status bits are output on the bus at the same
time that data are transferred over the other bus lines.
•Bit S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal
segment registers are used to generate the physical address that was output on the address
bus during the current bus cycle.
•Code S4S3 = 00 identifies a register known as extra segment register as the source of the
segment address.
•Status line S5 reflects the status of another internal characteristic of the 8086. It is the
logic level of the internal enable flag. The last status bit S6 is always at the logic 0 level.

Vcc GND

A0-A15,A16/S3 – A19/S6

Address / data bus

D0 – D15

ALE

BHE / S7

M / IO

DT / R

RD

WR

DEN

READY

CLK clock

MN / MX

Vcc

Mode select

HLDA

HOLD

RESET

INTR

INTA

TEST

NMI
8086
MPU

DMA
interface

Interrupt
interface

Memory I/O
controls

Block Diagram of the Minimum Mode 8086 MPU

•Control Signals :

 The control signals are provided to support the 8086 memory I/O interfaces. They
control functions such as when the bus is to carry a valid address in which direction data
are to be transferred over the bus, when valid write data are on the bus and when to put
read data on the system bus.
•ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on
the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse
at ALE.
•Another control signal that is produced during the bus cycle is BHE bank high enable.
Logic 0 on this used as a memory enable signal for the most significant byte half of the
data bus D8 through D1. These lines also serves a second function, which is as the S7
status line.
•Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress
and in which direction data are to be transferred over the bus.

S4 S3 Segment Register

0 0

0 1

1 0

1 1

Extra

Stack

Code / none

Data

Memory segment status codes.

•The logic level of M/IO tells external circuitry whether a memory or I/O transfer is
taking place over the bus. Logic 1 at this output signals a memory operation and logic 0
an I/O operation.
•The direction of data transfer over the bus is signaled by the logic level output at DT/R.
When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the
transmit mode. Therefore, data are either written into memory or output to an I/O device.
•On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This
corresponds to reading data from memory or input of data from an input port.
•The signal read RD and write WR indicates that a read bus cycle or a write bus cycle is
in progress. The 8086 switches WR to logic 0 to signal external device that valid write or
output data are on the bus.
• On the other hand, RD indicates that the 8086 is performing a read of data of the bus.
During read operations, one other control signal is also supplied. This is DEN (data
enable) and it signals external devices when they should put data on the bus.
•There is one other control signal that is involved with the memory and I/O interface.
This is the READY signal.
•READY signal is used to insert wait states into the bus cycle such that it is extended by
a number of clock periods. This signal is provided by an external clock generator device
and can be supplied by the memory or I/O sub-system to signal the 8086 when they are
ready to permit the data transfer to be completed.
•Interrupt signals : The key interrupt interface signals are interrupt request (INTR) and
interrupt acknowledge (INTA).
•INTR is an input to the 8086 that can be used by an external device to signal that it need
to be serviced.
•Logic 1 at INTR represents an active interrupt request. When an interrupt request has
been recognized by the 8086, it indicates this fact to external circuit with pulse to logic 0
at the INTA output.
•The TEST input is also related to the external interrupt interface. Execution of a WAIT
instruction causes the 8086 to check the logic level at the TEST input.
•If the logic 1 is found, the MPU suspend operation and goes into the idle state. The 8086
no longer executes instructions, instead it repeatedly checks the logic level of the TEST
input waiting for its transition back to logic 0.
•As TEST switches to 0, execution resume with the next instruction in the program. This
feature can be used to synchronize the operation of the 8086 to an event in external
hardware.
•There are two more inputs in the interrupt interface: the nonmaskable interrupt NMI and
the reset interrupt RESET.
•On the 0-to-1 transition of NMI control is passed to a nonmaskable interrupt service
routine. The RESET input is used to provide a hardware reset for the 8086. Switching
RESET to logic 0 initializes the internal register of the 8086 and initiates a reset service
routine.
•DMA Interface signals :The direct memory access DMA interface of the 8086
minimum mode consist of the HOLD and HLDA signals.
•When an external device wants to take control of the system bus, it signals to the 8086
by switching HOLD to the logic 1 level. At the completion of the current bus cycle, the
8086 enters the hold state. In the hold state, signal lines AD0 through AD15, A16/S3

through A19/S6, BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z state.
The 8086 signals external device that it is in this state by switching its HLDA output to
logic 1 level.

Maximum Mode Interface

•When the 8086 is set for the maximum-mode configuration, it provides signals for
implementing a multiprocessor / coprocessor system environment.
•By multiprocessor environment we mean that one microprocessor exists in the system
and that each processor is executing its own program.
• Usually in this type of system environment, there are some system resources that are
common to all processors.
•They are called as global resources. There are also other resources that are assigned to
specific processors. These are known as local or private resources.
•Coprocessor also means that there is a second processor in the system. In this two
processor does not access the bus at the same time.
•One passes the control of the system bus to the other and then may suspend its operation.
•In the maximum-mode 8086 system, facilities are provided for implementing allocation
of global resources and passing bus control to other microprocessor or coprocessor.

MN/MX

RESET

NMI
TEST

INTR

RQ / GT1 RQ / GT0

8086 MPU

Vcc GND
CLK

CRQLCK

ANYREQ

RESB
SYSB/RESB

AEN IOB LOCK
S0

S1

S2

CLK

S0

S1

S2

CLK AEN IOB

S0

S1

S2
LOCK

8289
Bus

CLK AEN IOB

8288 Bus
controller

DEN
DT/ R
ALE

Local bus control

QS1, QS0

READY
RD

BHE

D0 – D15

A0-A15,
A16/S3-A19/S6

ALE

DEN
DT / R

MCE / PDEN
INTA

AIOWC
IOWC

MRDC
MWTC

AMWC
IORC

BCLK

BREQ

BPRN

BPRO
CBRQ
BUSY

INIT
Multi Bus

8086 Maximum mode Block Diagram

•8288 Bus Controller – Bus Command and Control Signals:

 8086 does not directly provide all the signals that are required to control the memory,
I/O and interrupt interfaces.
•Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced
by the 8086. Instead it outputs three status signals S0, S1, S2 prior to the initiation of each
bus cycle. This 3- bit bus status code identifies which type of bus cycle is to follow.
•S2S1S0 are input to the external bus controller device, the bus controller generates the
appropriately timed command and control signals.

•The 8288 produces one or two of these eight command signals for each bus cycles. For
instance, when the 8086 outputs the code S2S1S0 equals 001, it indicates that an I/O read
cycle is to be performed.
•In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.
•The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals
provide the same functions as those described for the minimum system mode. This set of
bus commands and control signals is compatible with the Multibus and industry standard
for interfacing microprocessor systems.

Status Inputs

S2 S1 S0

0

Bus Status Codes

0
0
0

1

1

1

1 1
1

0
0

0

0

1
1

0
1
0
1

0

1

0

1

CPU Cycles 8288
Command

Interrupt Acknowledge

Read I/O Port
Write I/O Port
Halt

Instruction Fetch

Read Memory

Write Memory

Passive

INTA
IORC

IOWC, AIOWC
None
MRDC

MRDC

MWTC, AMWC

None

•The output of 8289 are bus arbitration signals:

Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority
in (BPRN), bus request (BREQ) and bus clock (BCLK).
•They correspond to the bus exchange signals of the Multibus and are used to lock other
processor off the system bus during the execution of an instruction by the 8086.
•In this way the processor can be assured of uninterrupted access to common system
resources such as global memory.
•Queue Status Signals : Two new signals that are produced by the 8086 in the
maximum-mode system are queue status outputs QS0 and QS1. Together they form a 2-bit
queue status code, QS1QS0.
•Following table shows the four different queue status.

•Local Bus Control Signal – Request / Grant Signals: In a maximum mode
configuration, the minimum mode HOLD, HLDA interface is also changed. These two
are replaced by request/grant lines RQ/ GT0 and RQ/ GT1, respectively. They provide a
prioritized bus access mechanism for accessing the local bus.

Internal Registers of 8086

•The 8086 has four groups of the user accessible internal registers. They are the
instruction pointer, four data registers, four pointer and index register, four segment
registers.

QS1 QS0

0 (low) 0

Queue Status

No Operation. During the last clock cycle, nothing was
taken from the queue.

0 1 First Byte. The byte taken from the queue was the first byte
of the instruction.

1 (high) 0 Queue Empty. The queue has been reinitialized as a result
of the execution of a transfer instruction.

1 1
Subsequent Byte. The byte taken from the queue was a
subsequent byte of the instruction.

Queue status codes

•The 8086 has a total of fourteen 16-bit registers including a 16 bit register called the
status register, with 9 of bits implemented for status and control flags.
•Most of the registers contain data/instruction offsets within 64 KB memory segment.
There are four different 64 KB segments for instructions, stack, data and extra data. To
specify where in 1 MB of processor memory these 4 segments are located the processor
uses four segment registers:
•Code segment (CS) is a 16-bit register containing address of 64 KB segment with
processor instructions. The processor uses CS segment for all accesses to instructions
referenced by instruction pointer (IP) register. CS register cannot be changed directly.
The CS register is automatically updated during far jump, far call and far return
instructions.
•Stack segment (SS) is a 16-bit register containing address of 64KB segment with
program stack. By default, the processor assumes that all data referenced by the stack
pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register
can be changed directly using POP instruction.
•Data segment (DS) is a 16-bit register containing address of 64KB segment with
program data. By default, the processor assumes that all data referenced by general
registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment.
DS register can be changed directly using POP and LDS instructions.
•Accumulator register consists of two 8-bit registers AL and AH, which can be
combined together and used as a 16-bit register AX. AL in this case contains the low-
order byte of the word, and AH contains the high-order byte. Accumulator can be used
for I/O operations and string manipulation.
•Base register consists of two 8-bit registers BL and BH, which can be combined together
and used as a 16-bit register BX. BL in this case contains the low-order byte of the word,
and BH contains the high-order byte. BX register usually contains a data pointer used for
based, based indexed or register indirect addressing.
•Count register consists of two 8-bit registers CL and CH, which can be combined
together and used as a 16-bit register CX. When combined, CL register contains the low-
order byte of the word, and CH contains the high-order byte. Count register can be used
in Loop, shift/rotate instructions and as a counter in string manipulation,.
•Data register consists of two 8-bit registers DL and DH, which can be combined
together and used as a 16-bit register DX. When combined, DL register contains the low-
order byte of the word, and DH contains the high-order byte. Data register can be used as
a port number in I/O operations. In integer 32-bit multiply and divide instruction the DX
register contains high-order word of the initial or resulting number.
•The following registers are both general and index registers:
•Stack Pointer (SP) is a 16-bit register pointing to program stack.
•Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is
usually used for based, based indexed or register indirect addressing.
•Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register
indirect addressing, as well as a source data address in string manipulation instructions.
•Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and
register indirect addressing, as well as a destination data address in string manipulation
instructions.
Other registers:

•Instruction Pointer (IP) is a 16-bit register.
•Flags is a 16-bit register containing 9 one bit flags.
•Overflow Flag (OF) - set if the result is too large positive number, or is too small
negative number to fit into destination operand.
•Direction Flag (DF) - if set then string manipulation instructions will auto-decrement
index registers. If cleared then the index registers will be auto-incremented.
•Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.
•Single-step Flag (TF) - if set then single-step interrupt will occur after the next
instruction.
•Sign Flag (SF) - set if the most significant bit of the result is set.
•Zero Flag (ZF) - set if the result is zero.
•Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL
register.
•Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the
result is even.
•Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit
during last result calculation.

Addressing Modes

•Implied - the data value/data address is implicitly associated with the instruction.
•Register - references the data in a register or in a register pair.
•Immediate - the data is provided in the instruction.
•Direct - the instruction operand specifies the memory address where data is located.
•Register indirect - instruction specifies a register containing an address, where data is
located. This addressing mode works with SI, DI, BX and BP registers.
•Based :- 8-bit or 16-bit instruction operand is added to the contents of a base register
(BX or BP), the resulting value is a pointer to location where data resides.
•Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an index
register (SI or DI), the resulting value is a pointer to location where data resides.
•Based Indexed :- the contents of a base register (BX or BP) is added to the contents of
an index register (SI or DI), the resulting value is a pointer to location where data resides.
•Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP) and index register (SI or DI), the resulting value is
a pointer to location where data resides.

Memory

•Program, data and stack memories occupy the same memory space. As the most of the
processor instructions use 16-bit pointers the processor can effectively address only 64
KB of memory.
• To access memory outside of 64 KB the CPU uses special segment registers to specify
where the code, stack and data 64 KB segments are positioned within 1 MB of memory
(see the "Registers" section below).

•16-bit pointers and data are stored as:
address: low-order byte
address+1: high-order byte
•Program memory - program can be located anywhere in memory. Jump and call
instructions can be used for short jumps within currently selected 64 KB code segment,
as well as for far jumps anywhere within 1 MB of memory.
•All conditional jump instructions can be used to jump within approximately +127 to -
127 bytes from current instruction.
•Data memory - the processor can access data in any one out of 4 available segments,
which limits the size of accessible memory to 256 KB (if all four segments point to
different 64 KB blocks).
•Accessing data from the Data, Code, Stack or Extra segments can be usually done by
prefixing instructions with the DS:, CS:, SS: or ES: (some registers and instructions by
default may use the ES or SS segments instead of DS segment).
•Word data can be located at odd or even byte boundaries. The processor uses two
memory accesses to read 16-bit word located at odd byte boundaries. Reading word data
from even byte boundaries requires only one memory access.
•Stack memory can be placed anywhere in memory. The stack can be located at odd
memory addresses, but it is not recommended for performance reasons (see "Data
Memory" above).
Reserved locations:
•0000h - 03FFh are reserved for interrupt vectors. Each interrupt vector is a 32-bit pointer
in format segment: offset.
•FFFF0h - FFFFFh - after RESET the processor always starts program execution at the
FFFF0h address.

Interrupts
The processor has the following interrupts:
•INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using
STI/CLI instructions or using more complicated method of updating the FLAGS register
with the help of the POPF instruction.
• When an interrupt occurs, the processor stores FLAGS register into stack, disables
further interrupts, fetches from the bus one byte representing interrupt type, and jumps to
interrupt processing routine address of which is stored in location 4 * <interrupt type>.
Interrupt processing routine should return with the IRET instruction.
•NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR
interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine is
stored in location 0008h. This interrupt has higher priority then the maskable interrupt.
•Software interrupts can be caused by:
•INT instruction - breakpoint interrupt. This is a type 3 interrupt.
•INT <interrupt number> instruction - any one interrupt from available 256 interrupts.
•INTO instruction - interrupt on overflow
•Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the
CPU processes this interrupt it clears TF flag before calling the interrupt processing
routine.

•Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape
opcode (type 7).
•Software interrupt processing is the same as for the hardware interrupts.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 2

Contents

Description of Instructions

Assembly directives

Algorithms with assembly software programs

M. Krishna Kumar MAM/M7/MKK18/V1/2004 3

AAA Instruction - ASCII Adjust after Addition

AAD Instruction - ASCII adjust before Division

AAM Instruction - ASCII adjust after Multiplication

AAS Instruction - ASCII Adjust for Subtraction

ADC Instruction - Add with carry.

ADD Instruction - ADD destination, source

AND Instruction - AND corresponding bits of two operands

Instruction Description

M. Krishna Kumar MAM/M7/MKK18/V1/2004 4

Example

AAA Instruction - AAA converts the result of the
addition of two valid unpacked BCD digits to a valid 2-digit
BCD number and takes the AL register as its implicit operand.

Two operands of the addition must have its
lower 4 bits contain a number in the range from 0-9.The AAA
instruction then adjust AL so that it contains a correct BCD
digit. If the addition produce carry (AF=1), the AH register is
incremented and the carry CF and auxiliary carry AF flags are
set to 1. If the addition did not produce a decimal carry, CF and
AF are cleared to 0 and AH is not altered. In both cases the
higher 4 bits of AL are cleared to 0.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 5

AAA will adjust the result of the two ASCII characters
that were in the range from 30h (“0”) to 39h(“9”).This is
because the lower 4 bits of those character fall in the range of
0-9.The result of addition is not a ASCII character but it is a
BCD digit.

Example:
MOV AH,0 ;Clear AH for MSD
MOV AL,6 ;BCD 6 in AL
ADD AL,5 ;Add BCD 5 to digit in AL
AAA ;AH=1, AL=1 representing BCD 11.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 6

AAD Instruction - ADD converts unpacked BCD
digits in the AH and AL register into a single binary number in
the AX register in preparation for a division operation.

Before executing AAD, place the Most significant
BCD digit in the AH register and Last significant in the AL
register. When AAD is executed, the two BCD digits are
combined into a single binary number by setting
AL=(AH*10)+AL and clearing AH to 0.
Example:
MOV AX,0205h ;The unpacked BCD number 25
AAD ;After AAD , AH=0 and

;AL=19h (25)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 7

After the division AL will then contain the unpacked BCD
quotient and AH will contain the unpacked BCD remainder.
Example:

;AX=0607 unpacked BCD for 67 decimal
;CH=09H

AAD ;Adjust to binary before division
;AX=0043 = 43H =67 decimal

DIV CH ;Divide AX by unpacked BCD in CH
;AL = quotient = 07 unpacked BCD
;AH = remainder = 04 unpacked BCD

M. Krishna Kumar MAM/M7/MKK18/V1/2004 8

AAM Instruction - AAM converts the result of the
multiplication of two valid unpacked BCD digits into a valid
2-digit unpacked BCD number and takes AX as an implicit
operand.

To give a valid result the digits that have been
multiplied must be in the range of 0 – 9 and the result should
have been placed in the AX register. Because both operands
of multiply are required to be 9 or less, the result must be less
than 81 and thus is completely contained in AL.

AAM unpacks the result by dividing AX
by 10, placing the quotient (MSD) in AH and the remainder
(LSD) in AL.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 9

Example:

MOV AL, 5
MOV BL, 7
MUL BL ;Multiply AL by BL , result in AX
AAM ;After AAM, AX =0305h (BCD 35)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 10

AAS Instruction - AAS converts the result of the
subtraction of two valid unpacked BCD digits to a single valid
BCD number and takes the AL register as an implicit operand.
The two operands of the subtraction must have its lower 4 bit
contain number in the range from 0 to 9 .The AAS instruction
then adjust AL so that it contain a correct BCD digit.

MOV AX,0901H ;BCD 91
SUB AL, 9 ;Minus 9
AAS ; Give AX =0802 h (BCD 82)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 11

(a)

;AL =0011 1001 =ASCII 9
;BL=0011 0101 =ASCII 5

SUB AL, BL ;(9 - 5) Result :
;AL = 00000100 = BCD 04,CF = 0

AAS ;Result :
;AL=00000100 =BCD 04
;CF = 0 NO Borrow required

M. Krishna Kumar MAM/M7/MKK18/V1/2004 12

(b)

;AL = 0011 0101 =ASCII 5
;BL = 0011 1001 = ASCII 9

SUB AL, BL ;(5 - 9) Result :
;AL = 1111 1100 = - 4
; in 2’s complement CF = 1

AAS ;Results :
;AL = 0000 0100 =BCD 04
;CF = 1 borrow needed .

M. Krishna Kumar MAM/M7/MKK18/V1/2004 13

ADD Instruction - These instructions add a number
from source to a number from some destination and put the
result in the specified destination. The add with carry
instruction ADC, also add the status of the carry flag into the
result. The source and destination must be of same type ,
means they must be a byte location or a word location. If you
want to add a byte to a word, you must copy the byte to a word
location and fill the upper byte of the word with zeroes before
adding.
EXAMPLE:
ADD AL,74H ;Add immediate number 74H to

; content of AL

M. Krishna Kumar MAM/M7/MKK18/V1/2004 14

ADC CL,BL ;Add contents of BL plus
;carry status to contents of CL.
;Results in CL

ADD DX, BX ;Add contents of BX to contents
;of DX

ADD DX, [SI] ;Add word from memory at
;offset [SI] in DS to contents of DX

M. Krishna Kumar MAM/M7/MKK18/V1/2004 15

; Addition of Un Signed numbers
ADD CL, BL ;CL = 01110011 =115 decimal

;+ BL = 01001111 = 79 decimal
;Result in CL = 11000010 = 194 decimal

; Addition of Signed numbers
ADD CL, BL ;CL = 01110011 = + 115 decimal

;+ BL = 01001111 = +79 decimal
;Result in CL = 11000010 = - 62 decimal

; Incorrect because result is too large to fit in 7 bits.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 16

AND Instruction - This Performs a bitwise Logical
AND of two operands. The result of the operation is stored in
the op1 and used to set the flags.

AND op1, op2
To perform a bitwise AND of the two operands, each bit

of the result is set to 1 if and only if the corresponding bit in
both of the operands is 1, otherwise the bit in the result I cleared
to 0 .
AND BH, CL ;AND byte in CL with byte in BH

;result in BH
AND BX,00FFh ;AND word in BX with immediate

;00FFH. Mask upper byte, leave
;lower unchanged

M. Krishna Kumar MAM/M7/MKK18/V1/2004 17

AND CX,[SI] ; AND word at offset [SI] in data
;segment with word in CX
;register . Result in CX register .

;BX = 10110011 01011110
AND BX,00FFh ;Mask out upper 8 bits of BX

;Result BX = 00000000 01011110
;CF =0 , OF = 0, PF = 0, SF = 0 ,
;ZF = 0

M. Krishna Kumar MAM/M7/MKK18/V1/2004 18

CALL Instruction

• Direct within-segment (near or intrasegment)
• Indirect within-segment (near or intrasegment)
• Direct to another segment (far or intersegment)
• Indirect to another segment (far or intersegment)

CBW Instruction - Convert signed Byte to signed
word

CLC Instruction - Clear the carry flag

CLD Instruction - Clear direction flag

M. Krishna Kumar MAM/M7/MKK18/V1/2004 19

CLI Instruction - Clear interrupt flag

CMC Instruction - Complement the carry
flag

CMP Instruction - Compare byte or word-
CMP destination, source.

CMPS/CMPSB/
CMPSW Instruction - Compare string bytes or

string words

CWD Instruction - Convert Signed Word to -
Signed Double word

M. Krishna Kumar MAM/M7/MKK18/V1/2004 20

CALL Instruction - This Instruction is used to transfer
execution to a subprogram or procedure. There are two basic
types of CALL ’s : Near and Far.

A Near CALL is a call to a procedure
which is in the same code segment as the CALL instruction .
When 8086 executes the near CALL instruction it decrements
the stack pointer by two and copies the offset of the next
instruction after the CALL on the stack. This offset saved on
the stack is referred as the return address, because this is the
address that execution will returns to after the procedure
executes. A near CALL instruction will also load the
instruction pointer with the offset of the first instruction in the
procedure.

Example

M. Krishna Kumar MAM/M7/MKK18/V1/2004 21

A RET instruction at the end of the procedure will return
execution to the instruction after the CALL by coping the
offset saved on the stack back to IP.

A Far CALL is a call to a procedure which
is in a different from that which contains the CALL
instruction . When 8086 executes the Far CALL instruction it
decrements the stack pointer by two again and copies the
content of CS register to the stack. It then decrements the
stack pointer by two again and copies the offset contents
offset of the instruction after the CALL to the stack. Finally it
loads CS with segment base of the segment which contains
the procedure and IP with the offset of the first instruction of
the procedure in segment. A RET instruction at end of
procedure will return to the next instruction after the CALL
by restoring the saved CS and IP from the stack.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 22

;Direct within-segment (near or intrasegment)

CALL MULTO ;MULTO is the name of
the procedure. The assembler determines displacement of
MULTO from the instruction after the CALL and codes
this displacement in as part of the instruction .

;Indirect within-segment (near or intrasegment)

CALL BX ; BX contains the offset of
the first instruction of the procedure .Replaces contents of
word of IP with contents o register BX.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 23

CALL WORD PTR[BX] ;Offset of first instruction
of procedure is in two memory addresses in DS .Replaces
contents of IP with contents of word memory location in
DS pointed to by BX.

;Direct to another segment- far or intersegment.
CALL SMART ;SMART is the name of the

;Procedure
SMART PROC FAR ; Procedure must be declare as

;an far

M. Krishna Kumar MAM/M7/MKK18/V1/2004 24

CBW Instruction - CBW converts the signed value in
the AL register into an equivalent 16 bit signed value in the
AX register by duplicating the sign bit to the left.

This instruction copies the sign of a byte in
AL to all the bits in AH. AH is then said to be the sign
extension of AL.
Example:

;AX = 00000000 10011011 = - 155 decimal
CBW ;Convert signed byte in AL to signed word in

;AX.
;Result in AX = 11111111 10011011
; = - 155 decimal

M. Krishna Kumar MAM/M7/MKK18/V1/2004 25

CLC Instruction - CLC clear the carry flag (CF) to 0
This instruction has no affect on the processor, registers, or
other flags. It is often used to clear the CF before returning
from a procedure to indicate a successful termination. It is also
use to clear the CF during rotate operation involving the CF
such as ADC, RCL, RCR .
Example:
CLC ;Clear carry flag.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 26

CLD Instruction - This instruction reset the
designation flag to zero. This instruction has no effect on the
registers or other flags. When the direction flag is cleared /
reset SI and DI will automatically be incremented when one
of the string instruction such as MOVS, CMPS,
SCAS,MOVSB and STOSB executes.

Example :
CLD ;Clear direction flag so that string pointers

;auto increment

M. Krishna Kumar MAM/M7/MKK18/V1/2004 27

CLI Instruction - This instruction resets the interrupt
flag to zero. No other flags are affected. If the interrupt flag is
reset , the 8086 will not respond to an interrupt signal on its
INTR input. This CLI instruction has no effect on the
nonmaskable interrupt input, NMI
CMC Instruction - If the carry flag CF is a zero before
this instruction, it will be set to a one after the instruction. If
the carry flag is one before this instruction, it will be reset to a
zero after the instruction executes. CMC has no effect on other
flags.
Example:
CMC ;Invert the carry flag.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 28

CWD Instruction - CWD converts the 16 bit signed
value in the AX register into an equivalent 32 bit signed value
in DX: AX register pair by duplicating the sign bit to the left.

The CWD instruction sets all the bits in the
DX register to the same sign bit of the AX register. The effect
is to create a 32- bit signed result that has same integer value
as the original 16 bit operand.
Example:

Assume AX contains C435h. If the CWD instruction is
executed, DX will contain FFFFh since bit 15 (MSB) of AX
was 1. Both the original value of AX (C435h) and resulting
value of DX : AX (FFFFC435h) represents the same signed
number.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 29

Example:

;DX = 00000000 00000000
;AX = 11110000 11000111 = - 3897 decimal

CWD ;Convert signed word in AX to signed double
;word in DX:AX
;Result DX = 11111111 11111111
;AX = 11110000 11000111 = -3897 decimal .

M. Krishna Kumar MAM/M7/MKK18/V1/2004 30

DAA Instruction - Decimal Adjust Accumulator

DAS Instruction - Decimal Adjust after Subtraction

DEC Instruction - Decrement destination register or
memory DEC destination.

DIV Instruction - Unsigned divide-Div source

ESC Instruction

M. Krishna Kumar MAM/M7/MKK18/V1/2004 31

DIV Instruction - This instruction is used to divide an
Unsigned word by a byte or to divide an unsigned double
word by a word.

When dividing a word by a byte , the word must
be in the AX register. After the division AL will contains an 8-
bit result (quotient) and AH will contain an 8- bit remainder. If
an attempt is made to divide by 0 or the quotient is too large to
fit in AL (greater than FFH), the 8086 will automatically do a
type 0 interrupt .
Example:
DIV BL ;Word in AX / byte in BL

;Quotient in AL . Remainder in AH.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 32

When a double word is divided by a word, the most
significant word of the double word must be in DX and the
least significant word of the double word must be in AX. After
the division AX will contain the 16 –bit result (quotient) and
DX will contain a 16 bit remainder. Again , if an attempt is
made to divide by zero or quotient is too large to fit in AX (
greater than FFFFH) the 8086 will do a type of 0 interrupt .
Example:

DIV CX ; (Quotient) AX= (DX:AX)/CX
: (Reminder) DX=(DX:AX)%CX

M. Krishna Kumar MAM/M7/MKK18/V1/2004 33

For DIV the dividend must always be in AX or DX
and AX, but the source of the divisor can be a register or a
memory location specified by one of the 24 addressing modes.

If you want to divide a byte by a byte, you
must first put the dividend byte in AL and fill AH with all 0’s .
The SUB AH,AH instruction is a quick way to do.

If you want to divide a word by a word,
put the dividend word in AX and fill DX with all 0’s. The
SUB DX,DX instruction does this quickly.
Example: ; AX = 37D7H = 14, 295 decimal

; BH = 97H = 151 decimal
DIV BH ;AX / BH

; AX = Quotient = 5EH = 94 decimal
; AH = Remainder = 65H = 101 decimal

M. Krishna Kumar MAM/M7/MKK18/V1/2004 34

ESC Instruction - Escape instruction is used to pass
instruction to a coprocessor such as the 8087 math coprocessor
which shares the address and data bus with an 8086.
Instruction for the coprocessor are represented by a 6 bit code
embedded in the escape instruction. As the 8086 fetches
instruction byte, the coprocessor also catches these bytes from
data bus and puts them in its queue. The coprocessor treats all
of the 8086 instruction as an NOP. When 8086 fetches an ESC
instruction , the coprocessor decodes the instruction and
carries out the action specified by the 6 bit code. In most of the
case 8086 treats ESC instruction as an NOP.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 35

HLT Instruction - HALT processing

IDIV Instruction - Divide by signed byte or word
IDIV source

IMUL Instruction - Multiply signed number-IMUL
source

IN Instruction - Copy data from a port
IN accumulator, port

INC Instruction - Increment - INC destination

M. Krishna Kumar MAM/M7/MKK18/V1/2004 36

HALT Instruction - The HLT instruction will cause the
8086 to stop fetching and executing instructions. The 8086
will enter a halt state. The only way to get the processor out of
the halt state are with an interrupt signal on the INTR pin or
an interrupt signal on NMI pin or a reset signal on the RESET
input .
IDIV Instruction - This instruction is used to divide a
signed word by a signed byte or to divide a signed double
word by a signed word.
Example:
IDIV BL ;Signed word in AX is divided by signed

;byte in BL

M. Krishna Kumar MAM/M7/MKK18/V1/2004 37

Example:
IDIV BP ;divide a Signed double word in DX and

;AX by signed word in BP
IDIV BYTE PTR[BX] ; divide AX by a byte at

;offset [BX] in DS
• A signed word divided by a signed byte

;AX = 00000011 10101011 = 03ABH=39 decimal
;BL = 11010011 = D3H = - 2DH = - 45 decimal

IDIV BL;Quotient AL= ECH = - 14H = -20 decimal
;Remainder AH = 27H = + 39 decimal

M. Krishna Kumar MAM/M7/MKK18/V1/2004 38

IMUL Instruction - This instruction performs a signed
multiplication.
IMUL op ;In this form the accumulator is the
multiplicand and op is the multiplier. op may be a register or a
memory operand.
IMUL op1, op2 ;In this form op1 is always be a
register operand and op2 may be a register or a memory
operand.
Example:
IMUL BH ;Signed byte in AL times multiplied by

;signed byte in BH and result in AX .

M. Krishna Kumar MAM/M7/MKK18/V1/2004 39

Example:
; 69 * 14
; AL = 01000101 = 69 decimal
; BL = 00001110 = 14 decimal

IMUL BL ;AX = 03C6H = + 966 decimal
;MSB = 0 because positive result

; - 28 * 59
; AL = 11100100 = - 28 decimal
;BL = 00001110 = 14 decimal

IMUL BL ;AX = F98Ch = - 1652 decimal
; MSB = 1 because negative result

M. Krishna Kumar MAM/M7/MKK18/V1/2004 40

IN Instruction - This IN instruction will copy data
from a port to the AL or AX register.

For the Fixed port IN instruction type the 8 – bit
port address of a port is specified directly in the instruction.
Example:
IN AL,0C8H ;Input a byte from port 0C8H to AL

IN AX, 34H ;Input a word from port 34H to AX

A_TO_D EQU 4AH
IN AX, A_TO_D ;Input a word from port 4AH to AX

M. Krishna Kumar MAM/M7/MKK18/V1/2004 41

For a variable port IN instruction, the port address
is loaded in DX register before IN instruction. DX is 16 bit.
Port address range from 0000H – FFFFH.
Example:
MOV DX, 0FF78H ;Initialize DX point to port
IN AL, DX ;Input a byte from a 8 bit port

;0FF78H to AL

IN AX, DX ;Input a word from 16 bit port to
;0FF78H to AX.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 42

INC Instruction - INC instruction adds one to the
operand and sets the flag according to the result. INC
instruction is treated as an unsigned binary number.

Example:
; AX = 7FFFh

INC AX ;After this instruction AX = 8000h

INC BL ; Add 1 to the contents of BL register
INC CL ; Add 1 to the contents of CX register.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 43

INT Instruction - Interrupt program

INTO Instruction - Interrupt on overflow.

IRET Instruction - Interrupt return

JA/JNBE Instruction - Jump if above/Jump if not
below nor equal.

JAE/JNB/
JNC Instructions - Jump if above or equal/

Jump if not below/
Jump if no carry.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 44

JA / JNBE - This instruction performs the Jump if
above (or) Jump if not below or equal operations according to
the condition, if CF and ZF = 0 .
Example: (1)

CMP AX, 4371H ;Compare by subtracting 4371H
;from AX

JA RUN_PRESS ;Jump to label RUN_PRESS if
;AX above 4371H

(2)
CMP AX, 4371H ;Compare (AX – 4371H)
JNBE RUN_PRESS ;Jump to label RUN_PRESS if

;AX not below or equal to 4371H

M. Krishna Kumar MAM/M7/MKK18/V1/2004 45

JAE / JNB / JNC - This instructions performs the
Jump if above or equal, Jump if not below, Jump if no carry
operations according to the condition, if CF = 0.
Examples:

1. CMP AX, 4371H ;Compare (AX – 4371H)
JAE RUN ;Jump to the label RUN if AX is

;above or equal to 4371H .
2. CMP AX, 4371H ;Compare (AX – 4371H)

JNB RUN_1 ;Jump to the label RUN_1 if AX
;is not below than 4371H

3. ADD AL, BL ; Add AL, BL. If result is with in
JNC OK ;acceptable range, continue

M. Krishna Kumar MAM/M7/MKK18/V1/2004 46

JB/JC/JNAE Instruction - Jump if below/Jump if carry/
Jump if not above nor equal

JBE/JNA Instructions - Jump if below or equal /
Jump if not above

JCXZ Instruction - Jump if the CX register is
zero

JE/JZ Instruction - Jump if equal/Jump if zero

JG/JNLE Instruction - Jump if greater/Jump if not
less than nor equal

M. Krishna Kumar MAM/M7/MKK18/V1/2004 47

JB/JC/JNAE Instruction - This instruction
performs the Jump if below (or) Jump if carry (or) Jump if
not below/ equal operations according to the condition,

if CF = 1
Example:

1. CMP AX, 4371H ;Compare (AX – 4371H)
JB RUN_P ;Jump to label RUN_P if AX is

;below 4371H

2. ADD BX, CX ;Add two words and Jump to
JC ERROR ; label ERROR if CF = 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 48

JBE/JNA Instruction - This instruction performs
the Jump if below or equal (or) Jump if not above operations
according to the condition, if CF and ZF = 1
Example:
CMP AX, 4371H ;Compare (AX – 4371H)
JBA RUN ;Jump to label RUN if AX is

;below or equal to 4371H

CMP AX, 4371H ;Compare (AX – 4371H)
JNA RUN_R ;Jump to label RUN_R if AX is

;not above than 4371H

M. Krishna Kumar MAM/M7/MKK18/V1/2004 49

JCXZ Instruction - This instruction performs the Jump
if CX register is zero. If CX does not contain all zeros,
execution will simply proceed to the next instruction.
Example:

JCXZ SKIP_LOOP;If CX = 0, skip the process
NXT: SUB [BX], 07H ;Subtract 7 from data value

INC BX ; BX point to next value
LOOP NXT ; Loop until CX = 0
SKIP_LOOP ;Next instruction

M. Krishna Kumar MAM/M7/MKK18/V1/2004 50

JE/JZ Instruction Instruction - This instruction
performs the Jump if equal (or) Jump if zero operations
according to the condition if ZF = 1
Example:
NXT:CMP BX, DX ;Compare (BX – DX)

JE DONE ;Jump to DONE if BX = DX,
SUB BX, AX ;Else subtract Ax
INC CX ;Increment counter
JUMP NXT ;Check again

DONE: MOV AX, CX ;Copy count to AX

M. Krishna Kumar MAM/M7/MKK18/V1/2004 51

Example:

IN AL, 8FH ;read data from port 8FH
SUB AL, 30H ;Subtract minimum value
JZ STATR ; Jump to label if result of

;subtraction was 0

M. Krishna Kumar MAM/M7/MKK18/V1/2004 52

JG/JNLE Instruction - This instruction performs
the Jump if greater (or) Jump if not less than or equal
operations according to the condition if ZF =0 and SF = OF
Example:

CMP BL, 39H ;Compare by subtracting
;39H from BL

JG NEXT1 ;Jump to label if BL is
;more positive than 39H

CMP BL, 39H ;Compare by subtracting
;39H from BL

JNLE NEXT2 ;Jump to label if BL is not
less than or equal 39H

M. Krishna Kumar MAM/M7/MKK18/V1/2004 53

JGE/JNL Instruction - Jump if greater than or equal/
Jump if not less than

JL/JNGE Instruction - Jump if less than/Jump if not
greater than or equal

JLE/JNG Instruction - Jump if less than or equal/
Jump if not greater

JMP Instruction - Unconditional jump to -
specified destination

M. Krishna Kumar MAM/M7/MKK18/V1/2004 54

JGE/JNL Instruction - This instruction performs
the Jump if greater than or equal / Jump if not less than
operation according to the condition if SF = OF
Example:

CMP BL, 39H ;Compare by the
;subtracting 39H from BL

JGE NEXT11 ;Jump to label if BL is
;more positive than 39H
; or equal to 39H

CMP BL, 39H ;Compare by subtracting
;39H from BL

JNL NEXT22 ;Jump to label if BL is not
;less than 39H

M. Krishna Kumar MAM/M7/MKK18/V1/2004 55

JL/JNGE Instruction - This instruction performs the
Jump if less than / Jump if not greater than or equal operation
according to the condition, if SF ≠ OF
Example:

CMP BL, 39H ;Compare by subtracting 39H
;from BL

JL AGAIN ;Jump to the label if BL is more
;negative than 39H

CMP BL, 39H ;Compare by subtracting 39H
;from BL

JNGE AGAIN1 ; Jump to the label if BL is not
;more positive than 39H or
;not equal to 39H

M. Krishna Kumar MAM/M7/MKK18/V1/2004 56

JLE/JNG Instruction - This instruction performs the
Jump if less than or equal / Jump if not greater operation
according to the condition, if ZF=1 and SF ≠ OF
Example:
CMP BL, 39h ; Compare by subtracting 39h

;from BL
JLE NXT1 ;Jump to the label if BL is more

;negative than 39h or equal to 39h

CMP BL, 39h ;Compare by subtracting 39h
;from BL

JNG AGAIN2 ; Jump to the label if BL is not
;more positive than 39h

M. Krishna Kumar MAM/M7/MKK18/V1/2004 57

JNA/JBE Instruction - Jump if not above/Jump if
below or equal

JNAE/JB Instruction - Jump if not above or equal/
Jump if below

JNB/JNC/JAE Instruction - Jump if not below/Jump if
no carry/Jump if above or

equal

JNE/JNZ Instruction - Jump if not equal/Jump if
not zero

M. Krishna Kumar MAM/M7/MKK18/V1/2004 58

JNE/JNZ Instruction - This instruction
performs the Jump if not equal / Jump if not zero operation
according to the condition, if ZF=0
Example:

NXT: IN AL, 0F8H ;Read data value from port
CMP AL, 72 ;Compare (AL – 72)
JNE NXT ;Jump to NXT if AL ≠ 72
IN AL, 0F9H ;Read next port when AL = 72

MOV BX, 2734H ; Load BX as counter
NXT_1:ADD AX, 0002H ;Add count factor to AX

DEC BX ;Decrement BX
JNZ NXT_1 Repeat until BX = 0

M. Krishna Kumar MAM/M7/MKK18/V1/2004 59

JNG/JLE Instruction - Jump if not greater/ Jump
if less than or equal

JNGE/JL Instruction - Jump if not greater than nor
equal/Jump if less than

JNL/JGE Instruction - Jump if not less than/ Jump
if greater than or equal

JNLE/JG Instruction - Jump if not less than nor
equal to /Jump if greater

than

M. Krishna Kumar MAM/M7/MKK18/V1/2004 60

JNO Instruction – Jump if no overflow

JNP/JPO Instruction – Jump if no parity/ Jump if
parity odd

JNS Instruction - Jump if not signed (Jump if
positive)

JNZ/JNE Instruction - Jump if not zero / jump if
not equal

JO Instruction - Jump if overflow

M. Krishna Kumar MAM/M7/MKK18/V1/2004 61

JNO Instruction – This instruction performs
the Jump if no overflow operation according to the condition,
if OF=0
Example:

ADD AL, BL ; Add signed bytes in AL and BL
JNO DONE ;Process done if no overflow -
MOV AL, 00H ;Else load error code in AL

DONE: OUT 24H, AL ; Send result to display

M. Krishna Kumar MAM/M7/MKK18/V1/2004 62

JNP/JPO Instruction – This instruction performs
the Jump if not parity / Jump if parity odd operation according
to the condition, if PF=0
Example:

IN AL, 0F8H ;Read ASCII char from UART
OR AL, AL ;Set flags
JPO ERROR1 ;If even parity executed, if not

;send error message

M. Krishna Kumar MAM/M7/MKK18/V1/2004 63

JNS Instruction - This instruction
performs the Jump if not signed (Jump if positive)

operation according to the condition, if SF=0
Example:
DEC AL ;Decrement counter
JNS REDO; Jump to label REDO if counter has not

;decremented to FFH
JO Instruction - This instruction performs
Jump if overflow operation according to the condition OF = 0
Example:
ADD AL, BL ;Add signed bits in AL and BL
JO ERROR ; Jump to label if overflow occur

;in addition
MOV SUM, AL ; else put the result in memory

;location named SUM

M. Krishna Kumar MAM/M7/MKK18/V1/2004 64

JPE/JP Instruction - Jump if parity even/ Jump if
parity

JPO/JNP Instruction - Jump if parity odd/ Jump if
no parity

JS Instruction - Jump if signed (Jump if
negative)

JZ/JE Instruction - Jump if zero/Jump if equal

M. Krishna Kumar MAM/M7/MKK18/V1/2004 65

JPE/JP Instruction - This instruction
performs the Jump if parity even / Jump if parity operation
according to the condition, if PF=1

Example:
IN AL, 0F8H ;Read ASCII char from UART
OR AL, AL ;Set flags
JPE ERROR2 ;odd parity is expected, if not

;send error message
JS Instruction - This instruction performs
the Jump if sign operation according to the condition, if SF=1
Example:

ADD BL, DH ;Add signed bytes DH to BL
JS JJS_S1 ;Jump to label if result is

;negative

M. Krishna Kumar MAM/M7/MKK18/V1/2004 66

LAHF Instruction - Copy low byte of flag
register to AH

LDS Instruction - Load register and Ds with
words from memory –
LDS register, memory
address of first word

LEA Instruction - Load effective address-LEA
register, source

LES Instruction - Load register and ES with
words from memory –LES
register, memory address of

first word.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 67

LAHF Instruction - LAHF instruction copies
the value of SF, ZF, AF, PF, CF, into bits of 7, 6, 4, 2, 0
respectively of AH register. This LAHF instruction was
provided to make conversion of assembly language programs
written for 8080 and 8085 to 8086 easier.
LDS Instruction - This instruction loads a far
pointer from the memory address specified by op2 into the DS
segment register and the op1 to the register. LDS op1, op2
Example:

LDS BX, [4326] ; copy the contents of the
memory at displacement 4326H in DS to BL, contents of
the 4327H to BH. Copy contents of 4328H and 4329H in
DS to DS register.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 68

LEA Instruction - This instruction indicates the offset
of the variable or memory location named as the source and
put this offset in the indicated 16 – bit register.
Example:

LEA BX, PRICE ;Load BX with offset of PRICE
;in DS

LEA BP, SS:STAK;Load BP with offset of STACK
;in SS

LEA CX, [BX][DI] ;Load CX with EA=BX + DI

M. Krishna Kumar MAM/M7/MKK18/V1/2004 69

LOCK Instruction - Assert bus lock signal

LODS/LODSB/
LODSW Instruction - Load string byte into AL or

Load string word into AX.

LOOP Instruction - Loop to specified
label until CX = 0

LOOPE /
LOOPZ Instruction - loop while CX ≠ 0 and

ZF = 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 70

LODS/LODSB/LODSW Instruction - This
instruction copies a byte from a string location pointed to by SI
to AL or a word from a string location pointed to by SI to AX.
If DF is cleared to 0,SI will automatically incremented to point
to the next element of string.
Example:
CLD ;Clear direction flag so SI is auto incremented

MOV SI, OFFSET SOURCE_STRING
;point SI at start of the string

LODS SOUCE_STRING ;Copy byte or word from
;string to AL or AX

M. Krishna Kumar MAM/M7/MKK18/V1/2004 71

LOOP Instruction - This instruction is used to
repeat a series of instruction some number of times
Example:

MOV BX, OFFSET PRICE
;Point BX at first element in array

MOV CX, 40 ;Load CX with number of
;elements in array

NEXT: MOV AL, [BX] ; Get elements from array
ADD AL, 07H ;Ad correction factor
DAA ; decimal adjust result
MOV [BX], AL ; Put result back in array
LOOP NEXT ; Repeat until all elements

;adjusted.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 72

LOOPE / LOOPZ Instruction - This instruction is
used to repeat a group of instruction some number of times
until CX = 0 and ZF = 0
Example:

MOV BX, OFFSET ARRAY
;point BX at start of the array

DEC BX
MOV CX, 100 ;put number of array elements in

;CX
NEXT:INC BX ;point to next element in array

CMP [BX], 0FFH ;Compare array elements FFH
LOOP NEXT

M. Krishna Kumar MAM/M7/MKK18/V1/2004 73

LOOPNE/LOOPNZ Instruction - This instruction is
used to repeat a group of instruction some number of times
until CX = 0 and ZF = 1
Example:

MOV BX, OFFSET ARRAY1
;point BX at start of the array

DEC BX
MOV CX, 100 ;put number of array elements in

;CX
NEXT:INC BX ;point to next elements in array

CMP [BX], 0FFH ;Compare array elements 0DH
LOOPNE NEXT

M. Krishna Kumar MAM/M7/MKK18/V1/2004 74

MOV Instruction - MOV destination, source

MOVS/MOVSB/
MOVSW Instruction - Move string byte or string

word-MOVS destination,
source

MUL Instruction - Multiply unsigned bytes or
words-MUL source

NEG Instruction - From 2’s complement –
NEG destination

NOP Instruction - Performs no operation.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 75

MOV Instruction - The MOV instruction copies a
word or a byte of data from a specified source to a specified
destination .

MOV op1, op2
Example:
MOV CX, 037AH ; MOV 037AH into the CX.
MOV AX, BX ;Copy the contents of register BX

;to AX
MOV DL,[BX] ;Copy byte from memory at BX

to DL , BX contains the offset of
;byte in DS.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 76

MUL Instruction - This instruction multiplies an
unsigned multiplication of the accumulator by the operand
specified by op. The size of op may be a register or memory
operand . MUL op
Example: ;AL = 21h (33 decimal)

;BL = A1h(161 decimal)
MUL BL ;AX =14C1h (5313 decimal) since AH≠0,

;CF and OF will set to 1.

MUL BH ; AL times BH, result in AX
MUL CX ;AX times CX, result high word in DX,

;low word in AX.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 77

NEG Instruction - NEG performs the two’s
complement subtraction of the operand from zero and sets the
flags according to the result.

;AX = 2CBh
NEG AX ;after executing NEG result AX =FD35h.

Example:
NEG AL ;Replace number in AL with its 2’s

;complement
NEG BX ;Replace word in BX with its 2’s

;complement
NEG BYTE PTR[BX]; Replace byte at offset BX in

; DS with its 2’s complement

M. Krishna Kumar MAM/M7/MKK18/V1/2004 78

NOP Instruction - This instruction simply uses up the
three clock cycles and increments the instruction pointer to
point to the next instruction. NOP does not change the status
of any flag. The NOP instruction is used to increase the delay
of a delay loop.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 79

NOT Instruction - Invert each bit of operand –
NOT destination.

OR Instruction - Logically OR corresponding of two
operands- OR destination, source.

OUT Instruction - Output a byte or word to a port –
OUT port, accumulator AL or AX.

POP Instruction - POP destination

M. Krishna Kumar MAM/M7/MKK18/V1/2004 80

NOT Instruction - NOT perform the bitwise
complement of op and stores the result back into op.

NOT op

Example :

NOT BX ;Complement contents of BX register.

;DX =F038h
NOT DX ;after the instruction DX = 0FC7h

M. Krishna Kumar MAM/M7/MKK18/V1/2004 81

OR Instruction - OR instruction perform the bit wise
logical OR of two operands .Each bit of the result is cleared to 0
if and only if both corresponding bits in each operand are 0,
other wise the bit in the result is set to 1.
OR op1, op2
Examples :
OR AH, CL ;CL ORed with AH, result in AH.

;CX = 00111110 10100101
OR CX,FF00h ;OR CX with immediate FF00h

;result in CX = 11111111 10100101
;Upper byte are all 1’s lower bytes
;are unchanged.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 82

OUT Instruction - The OUT instruction copies a byte
from AL or a word from AX or a double from the accumulator
to I/O port specified by op. Two forms of OUT instruction are
available : (1) Port number is specified by an immediate byte
constant, (0 - 255).It is also called as fixed port form. (2) Port
number is provided in the DX register (0 – 65535)
Example: (1)
OUT 3BH, AL ;Copy the contents of the AL to port 3Bh
OUT 2CH,AX ;Copy the contents of the AX to port 2Ch

(2)
MOV DX, 0FFF8H ;Load desired port address in DX
OUT DX, AL ; Copy the contents of AL to

;FFF8h
OUT DX, AX ;Copy content of AX to port

;FFF8H

M. Krishna Kumar MAM/M7/MKK18/V1/2004 83

POP Instruction - POP instruction copies the word at
the current top of the stack to the operand specified by op then
increments the stack pointer to point to the next stack.
Example:
POP DX ;Copy a word from top of the stack to

; DX and increments SP by 2.
POP DS ; Copy a word from top of the stack to

; DS and increments SP by 2.
POP TABLE [BX]

;Copy a word from top of stack to memory in DS with
;EA = TABLE + [BX].

M. Krishna Kumar MAM/M7/MKK18/V1/2004 84

POPF Instruction - Pop word from top of stack to flag -
register.

PUSH Instruction - PUSH source

PUSHF Instruction- Push flag register on the stack

RCL Instruction - Rotate operand around to the left
through CF –RCL destination, source.

RCR Instruction - Rotate operand around to the right
through CF- RCR destination, count

M. Krishna Kumar MAM/M7/MKK18/V1/2004 85

POPF Instruction - This instruction copies a word from
the two memory location at the top of the stack to flag register
and increments the stack pointer by 2.
PUSH Instruction - PUSH instruction decrements the
stack pointer by 2 and copies a word from a specified source to
the location in the stack segment where the stack pointer pointes.

Example:
PUSH BX ;Decrement SP by 2 and copy BX to stack
PUSH DS ;Decrement SP by 2 and copy DS to stack
PUSH TABLE[BX] ;Decrement SP by 2 and copy word

;from memory in DS at
;EA = TABLE + [BX] to stack .

M. Krishna Kumar MAM/M7/MKK18/V1/2004 86

PUSHF Instruction - This instruction decrements
the SP by 2 and copies the word in flag register to the memory
location pointed to by SP.
RCL Instruction - RCL instruction rotates the
bits in the operand specified by op1 towards left by the count
specified in op2.The operation is circular, the MSB of operand
is rotated into a carry flag and the bit in the CF is rotated
around into the LSB of operand. RCR op1, op2
Example:
CLC ;put 0 in CF
RCL AX, 1 ;save higher-order bit of AX in CF
RCL DX, 1 ;save higher-order bit of DX in CF
ADC AX, 0 ; set lower order bit if needed.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 87

Example :
RCL DX, 1 ;Word in DX of 1 bit is moved to left,
and ;MSB of word is given to CF and

;CF to LSB.
; CF=0, BH = 10110011

RCL BH, 1 ;Result : BH =01100110
;CF = 1, OF = 1 because MSB changed

;CF =1,AX =00011111 10101001
MOV CL, 2 ;Load CL for rotating 2 bit position
RCL AX, CL ;Result: CF =0, OF undefined

;AX = 01111110 10100110

M. Krishna Kumar MAM/M7/MKK18/V1/2004 88

RCR Instruction - RCR instruction rotates the bits in
the operand specified by op1 towards right by the count
specified in op2. RCR op1, op2
Example:(1)
RCR BX, 1 ;Word in BX is rotated by 1 bit towards

;right and CF will contain MSB bit and
;LSB contain CF bit .

(2) ;CF = 1, BL = 00111000
RCR BL, 1 ;Result: BL = 10011100, CF =0

;OF = 1 because MSB is changed to 1.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 89

REP/REPE/REPZ/
REPNE/REPNZ - (Prefix) Repeat String

instruction until specified
condition exist

RET Instruction – Return execution from
procedure to calling

program.

ROL Instruction - Rotate all bits of operand
left, MSB to LSB
ROL destination, count.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 90

ROL Instruction - ROL instruction rotates the bits in
the operand specified by op1 towards left by the count
specified in op2. ROL moves each bit in the operand to next
higher bit position. The higher order bit is moved to lower
order position. Last bit rotated is copied into carry flag.

ROL op1, op2
Example: (1)
ROL AX, 1 ;Word in AX is moved to left by 1 bit

;and MSB bit is to LSB, and CF

;CF =0 ,BH =10101110
ROL BH, 1 ;Result: CF ,Of =1 , BH = 01011101

M. Krishna Kumar MAM/M7/MKK18/V1/2004 91

Example : (2)
;BX = 01011100 11010011
;CL = 8 bits to rotate

ROL BH, CL ;Rotate BX 8 bits towards left
;CF =0, BX =11010011 01011100

M. Krishna Kumar MAM/M7/MKK18/V1/2004 92

ROR Instruction - Rotate all bits of operand
right, LSB to MSB –
ROR destination, count

SAHF Instruction – Copy AH register to low
byte of flag register

M. Krishna Kumar MAM/M7/MKK18/V1/2004 93

ROR Instruction - ROR instruction rotates the bits in
the operand op1 to wards right by count specified in op2. The
last bit rotated is copied into CF. ROR op1, op2
Example: (1)
ROR BL, 1 ;Rotate all bits in BL towards right by 1

bit position, LSB bit is moved to MSB
;and CF has last rotated bit.

(2) ;CF =0, BX = 00111011 01110101
ROR BX, 1 ;Rotate all bits of BX of 1 bit position

;towards right and CF =1,
BX = 10011101 10111010

M. Krishna Kumar MAM/M7/MKK18/V1/2004 94

Example (3)
;CF = 0, AL = 10110011,

MOVE CL, 04H ; Load CL
ROR AL, CL ;Rotate all bits of AL towards
right ;by 4 bits, CF = 0 ,AL = 00111011

SAHF Instruction - SAHF copies the value of bits 7, 6,
4, 2, 0 of the AH register into the SF, ZF, AF, PF, and CF
respectively. This instruction was provided to make easier
conversion of assembly language program written for 8080
and 8085 to 8086.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 95

SAL/SHL Instruction - Shift operand bits left, put
zero in LSB(s)

SAL/AHL destination, count

SAR Instruction - Shift operand bits right,
new MAB = old MSB
SAR destination, count.

SBB Instruction - Subtract with borrow
SBB destination, source

M. Krishna Kumar MAM/M7/MKK18/V1/2004 96

SAL / SHL Instruction - SAL instruction shifts the
bits in the operand specified by op1 to its left by the count
specified in op2. As a bit is shifted out of LSB position a 0 is
kept in LSB position. CF will contain MSB bit.

SAL op1,op2
Example:

;CF = 0, BX = 11100101 11010011
SAL BX, 1 ;Shift BX register contents by 1 bit

;position towards left
;CF = 1, BX = 11001011 1010011

M. Krishna Kumar MAM/M7/MKK18/V1/2004 97

SAR Instruction - SAR instruction shifts the bits in
the operand specified by op1 towards right by count specified
in op2.As bit is shifted out a copy of old MSB is taken in MSB
MSB position and LSB is shifted to CF. SAR op1, op2
Example: (1) ; AL = 00011101 = +29 decimal, CF = 0
SAR AL, 1 ;Shift signed byte in AL towards right

;(divide by 2)
;AL = 00001110 = + 14 decimal, CF = 1

(2)
;BH = 11110011 = - 13 decimal, CF = 1

SAR BH, 1 ;Shifted signed byte in BH to right
;BH = 11111001 = - 7 decimal, CF = 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 98

SBB Instruction - SUBB instruction subtracts op2
from op1, then subtracts 1 from op1 is CF flag is set and result
is stored in op1 and it is used to set the flag.
Example:
SUB CX, BX ;CX – BX . Result in CX

SUBB CH, AL ; Subtract contents of AL and
;contents CF from contents of CH

. ;Result in CH

SUBB AX, 3427H ;Subtract immediate number
;from AX

M. Krishna Kumar MAM/M7/MKK18/V1/2004 99

Example:
• Subtracting unsigned number

; CL = 10011100 = 156 decimal
; BH = 00110111 = 55 decimal

SUB CL, BH ; CL = 01100101 = 101 decimal
; CF, AF, SF, ZF = 0, OF, PF = 1

• Subtracting signed number
; CL = 00101110 = + 46 decimal
; BH = 01001010= + 74 decimal

SUB CL, BH ;CL = 11100100 = - 28 decimal
;CF = 1, AF, ZF =0,
;SF = 1 result negative

M. Krishna Kumar MAM/M7/MKK18/V1/2004 100

STD Instruction - Set the direction flag to 1

STI Instruction - Set interrupt flag (IF)

STOS/STOSB/
STOSW Instruction - Store byte or word in string.

SCAS/SCASB/ - Scan string byte or a
SCASW Instruction string word.

SHR Instruction - Shift operand bits right, put
zero in MSB

STC Instruction - Set the carry flag to 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 101

SHR Instruction - SHR instruction shifts the bits in
op1 to right by the number of times specified by op2 .
Example: (1)
SHR BP, 1 ; Shift word in BP by 1 bit position to
right ; and 0 is kept to MSB

(2)
MOV CL, 03H ;Load desired number of shifts into

;CL
SHR BYTE PYR[BX] ;Shift bytes in DS at offset BX

;and rotate 3 bits to right and
;keep 3 0’s in MSB

(3) ;SI = 10010011 10101101 , CF = 0
SHR SI, 1 ; Result: SI = 01001001 11010110

; CF = 1, OF = 1, SF = 0, ZF = 0

M. Krishna Kumar MAM/M7/MKK18/V1/2004 102

TEST Instruction – AND operand to update flags

WAIT Instruction - Wait for test signal or interrupt signal

XCHG Instruction - Exchange XCHG destination, source

XLAT/
XLATB Instruction - Translate a byte in AL

XOR Instruction - Exclusive OR corresponding bits of
two operands –
XOR destination, source

M. Krishna Kumar MAM/M7/MKK18/V1/2004 103

TEST Instruction - This instruction ANDs the contents
of a source byte or word with the contents of specified
destination word. Flags are updated but neither operand is
changed . TEST instruction is often used to set flags before a
condition jump instruction
Examples:

TEST AL, BH ;AND BH with AL. no result is
;stored . Update PF, SF, ZF

TEST CX, 0001H ;AND CX with immediate
;number
;no result is stored, Update PF,
;SF

M. Krishna Kumar MAM/M7/MKK18/V1/2004 104

Example :
;AL = 01010001

TEST Al, 80H ;AND immediate 80H with AL to
;test f MSB of AL is 1 or 0
;ZF = 1 if MSB of AL = 0
;AL = 01010001 (unchanged)
;PF = 0 , SF = 0
;ZF = 1 because ANDing produced
; is 00

M. Krishna Kumar MAM/M7/MKK18/V1/2004 105

WAIT Instruction - When this WAIT
instruction executes, the 8086 enters an idle condition. This
will stay in this state until a signal is asserted on TEST input
pin or a valid interrupt signal is received on the INTR or NMI
pin.
FSTSW STATUS ;copy 8087 status word to memory
FWAIT ;wait for 8087 to finish before-

; doing next 8086 instruction
MOV AX,STATUS ;copy status word to AX to

;check bits
In this code we are adding up of FWAIT instruction so that it
will stop the execution of the command until the above
instruction is finishes it’s work .so that you are not loosing
data and after that you will allow to continue the execution of
instructions.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 106

XCHG Instruction - The Exchange instruction
exchanges the contents of the register with the contents of
another register (or) the contents of the register with the
contents of the memory location. Direct memory to memory
exchange are not supported.
XCHG op1, op2
The both operands must be the same size and one of the
operand must always be a register .

Example:
XCHG AX, DX ;Exchange word in AX with word in DX
XCHG BL, CH ;Exchange byte in BL with byte in CH
XCHG AL, Money [BX] ;Exchange byte in AL with byte

;in memory at EA.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 107

XOR Instruction - XOR performs a bit wise logical
XOR of the operands specified by op1 and op2. The result of
the operand is stored in op1 and is used to set the flag.
XOR op1, op2
Example : (Numerical)

; BX = 00111101 01101001
;CX = 00000000 11111111

XOR BX, CX ;Exclusive OR CX with BX
;Result BX = 00111101 10010110

M. Krishna Kumar MAM/M7/MKK18/V1/2004 108

Assembler Directives

ASSUME

DB - Defined Byte.

DD - Defined Double Word

DQ - Defined Quad Word

DT - Define Ten Bytes

DW - Define Word

M. Krishna Kumar MAM/M7/MKK18/V1/2004 109

ASSUME Directive - The ASSUME directive is
used to tell the assembler that the name of the logical segment
should be used for a specified segment. The 8086 works
directly with only 4 physical segments: a Code segment, a data
segment, a stack segment, and an extra segment.
Example:

ASUME CS:CODE ;This tells the assembler
that the logical segment named CODE contains the instruction
statements for the program and should be treated as a code
segment.

ASUME DS:DATA ;This tells the assembler
that for any instruction which refers to a data in the data
segment, data will found in the logical segment DATA.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 110

DB - DB directive is used to declare a byte-type
variable or to store a byte in memory location.
Example:

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,
named as PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes
and initialize with ASCII code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in
memory and give it the name as TEMP, but leave the 100
bytes uninitialized. Program instructions will load values into
these locations.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 111

DW - The DW directive is used to define a
variable of type word or to reserve storage location of type
word in memory.
Example:

MULTIPLIER DW 437Ah ; this declares a
variable of type word and named it as MULTIPLIER. This
variable is initialized with the value 437Ah when it is loaded
into memory to run.

EXP1 DW 1234h, 3456h, 5678h ; this declares an
array of 3 words and initialized with specified values.

STOR1 DW 100 DUP(0); Reserve an array
of 100 words of memory and initialize all words with
0000.Array is named as STOR1.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 112

END - END directive is placed after the last
statement of a program to tell the assembler that this is the end
of the program module. The assembler will ignore any
statement after an END directive. Carriage return is required
after the END directive.
ENDP - ENDP directive is used along with the
name of the procedure to indicate the end of a procedure to the
assembler
Example:
SQUARE_NUM PROCE ; It start the procedure
;Some steps to find the square root of a number
SQUARE_NUM ENDP ;Hear it is the End for the procedure

M. Krishna Kumar MAM/M7/MKK18/V1/2004 113

END - End Program

ENDP - End Procedure

ENDS - End Segment

EQU - Equate

EVEN - Align on Even Memory Address

EXTRN

M. Krishna Kumar MAM/M7/MKK18/V1/2004 114

ENDS - This ENDS directive is used with name of
the segment to indicate the end of that logic segment.
Example:

CODE SEGMENT ;Hear it Start the logic
;segment containing code

; Some instructions statements to perform the logical
;operation
CODE ENDS ;End of segment named as

;CODE

M. Krishna Kumar MAM/M7/MKK18/V1/2004 115

EQU - This EQU directive is used to give a name
to some value or to a symbol. Each time the assembler finds
the name in the program, it will replace the name with the
value or symbol you given to that name.
Example:

FACTOR EQU 03H ; you has to write this
statement at the starting of your program and later in the
program you can use this as follows

ADD AL, FACTOR ; When it codes this
instruction the assembler will code it as ADDAL, 03H
;The advantage of using EQU in this manner is, if FACTOR is
used many no of times in a program and you want to change
the value, all you had to do is change the EQU statement at
beginning, it will changes the rest of all.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 116

EVEN - This EVEN directive instructs the
assembler to increment the location of the counter to the next
even address if it is not already in the even address. If the word
is at even address 8086 can read a memory in 1 bus cycle.

If the word starts at an odd address, the
8086 will take 2 bus cycles to get the data. A series of words
can be read much more quickly if they are at even address.
When EVEN is used the location counter will simply
incremented to next address and NOP instruction is inserted in
that incremented location.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 117

Example:
DATA1 SEGMENT
; Location counter will point to 0009 after assembler reads
;next statement
SALES DB 9 DUP(?) ;declare an array of 9 bytes
EVEN ; increment location counter to 000AH
RECORD DW 100 DUP(0) ;Array of 100 words will start

;from an even address for quicker read
DATA1 ENDS

M. Krishna Kumar MAM/M7/MKK18/V1/2004 118

GROUP - Group Related Segments

LABLE

NAME

OFFSET

ORG - Originate

M. Krishna Kumar MAM/M7/MKK18/V1/2004 119

GROUP - The GROUP directive is used to
group the logical segments named after the directive into one
logical group segment.

INCLUDE - This INCLUDE directive is used
to insert a block of source code from the named file into the
current source module.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 120

PROC - Procedure

PTR - Pointer

PUBLC

SEGMENT

SHORT

TYPE

M. Krishna Kumar MAM/M7/MKK18/V1/2004 121

PROC - The PROC directive is used to identify the
start of a procedure. The term near or far is used to specify the
type of the procedure.
Example:

SMART PROC FAR ; This identifies that
the start of a procedure named as SMART and instructs the
assembler that the procedure is far .

SMART ENDP
This PROC is used with ENDP to indicate the break of

the procedure.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 122

PTR - This PTR operator is used to assign a
specific type of a variable or to a label.
Example:

INC [BX] ; This instruction will not know whether to
increment the byte pointed to by BX or a word pointed to by
BX.

INC BYTE PTR [BX] ;increment the byte
;pointed to by BX

This PTR operator can also be used to override the
declared type of variable . If we want to access the a byte in an
array WORDS DW 437Ah, 0B97h,

MOV AL, BYTE PTR WORDS

M. Krishna Kumar MAM/M7/MKK18/V1/2004 123

PUBLIC - The PUBLIC directive is used to instruct
the assembler that a specified name or label will be accessed
from other modules.
Example:

PUBLIC DIVISOR, DIVIDEND ;these two
variables are public so these are available to all modules.

If an instruction in a module refers to a
variable in another assembly module, we can access that
module by declaring as EXTRN directive.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 124

TYPE - TYPE operator instructs the assembler to
determine the type of a variable and determines the number of
bytes specified to that variable.
Example:
Byte type variable – assembler will give a value 1
Word type variable – assembler will give a value 2
Double word type variable – assembler will give a value 4

ADD BX, TYPE WORD_ ARRAY ; hear we want to
increment BX to point to next word in an array of words.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 125

DOS Function Calls

AH 00H : Terminate a Program
AH 01H : Read the Keyboard
AH 02H : Write to a Standard Output Device
AH 08H : Read a Standard Input without Echo
AH 09H : Display a Character String
AH 0AH : Buffered keyboard Input
INT 21H : Call DOS Function

Contents

 Description of Instructions

 Assembly directives

 Algorithms with assembly software programs

DATA TRANSFER INSTRUCTIONS

GENERAL – PURPOSE BYTE OR WORD TRANSFER INSTRUCTIONS:

MOV
PUSH
POP
XCHG
XLAT

SIMPLE INPUT AND OUTPUT PORT TRANSFER INSTRUCTION:

IN
OUT

SPECIAL ADDRESS TRANSFER INSTRUCTION

LEA
LDS
LES

FLAG TRANSFER INSTRUCTIONS:

LAHF
SAHF
PUSHF
POPF

ARITHMETIC INSTRUCTIONS

ADITION INSTRUCTIONS:

ADD
ADC
INC
AAA
DAA

SUBTRACTION INSTRUCTIONS:

SUB
SBB
DEC
NEG
CMP
AAS
DAS

MULTIPLICATION INSTRUCTIONS:

MUL
IMUL
AAM

DIVISION INSTRUCTIONS:

DIV
IDIV
AAD
CBW
CWD

BIT MANIPULATION INSTRUCTIONS

LOGICAL INSTRUCTIONS:

NOT
AND
OR
XOR
TEST

SHIFT INSTRUCTIONS:

SHL / SAL
SHR
SAR

RPTATE INSTRUCTIONS:

ROL
ROR
RCL
RCR

STRING INSTRUCTIONS

REP
REPE / REPZ
REPNE / REPNZ
MOVS / MOVSB / MOVSW
COMPS / COMPSB / COMPSW
SCAS / SCASB / SCASW
LODS / LODSB / LODSW
STOS / STOSB / STOSW

PROGRAM EXECUTION TRANSFER INSTRUCTIONS

UNCONDITIONAL TRANSFER INSTRUCTIONS:

CALL
RET
JMP

CONDITIONAL TRANSFER INSTRUCTIONS:

JA / JNBE
JAE / JNB
JB / JNAE
JBE / JNA
JC
JE / JZ
JG / JNLE
JGE / JNL
JL / JNGE
JLE / JNG
JNC
JNE / JNZ
JNO
JNP / JPO
JNS
JO

JP / JPE
JS

ITERATION CONTROL INSTRUCTIONS:

LOOP
LOOPE / LOOPZ
LOOPNE / LOOPNZ
JCXZ

INTERRUPT INSTRUCTIONS:

INT
INTO
IRET

PROCESS CONTROL INSTRUCTIONS

FLAG SET / CLEAR INSTRUCTIONS:

STC
CLC
CMC
STD
CLD
STI
CLI

EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS:

HLT
WAIT
ESC
LOCK
NOP

Instruction Description

AAA Instruction - ASCII Adjust after Addition

AAD Instruction - ASCII adjust before Division

AAM Instruction - ASCII adjust after Multiplication

AAS Instruction - ASCII Adjust for Subtraction

ADC Instruction - Add with carry.

ADD Instruction - ADD destination, source

AND Instruction - AND corresponding bits of two operands

Example

AAA Instruction - AAA converts the result of the addition of two valid
unpacked BCD digits to a valid 2-digit BCD number and takes the AL register as its
implicit operand.
 Two operands of the addition must have its lower 4 bits
contain a number in the range from 0-9.The AAA instruction then adjust AL so that it
contains a correct BCD digit. If the addition produce carry (AF=1), the AH register is
incremented and the carry CF and auxiliary carry AF flags are set to 1. If the addition did
not produce a decimal carry, CF and AF are cleared to 0 and AH is not altered. In both
cases the higher 4 bits of AL are cleared to 0.
 AAA will adjust the result of the two ASCII characters that were in the
range from 30h (“0”) to 39h(“9”).This is because the lower 4 bits of those character fall
in the range of 0-9.The result of addition is not a ASCII character but it is a BCD digit.
•

Example:
 MOV AH,0 ;Clear AH for MSD
 MOV AL,6 ;BCD 6 in AL
 ADD AL,5 ;Add BCD 5 to digit in AL
 AAA ;AH=1, AL=1 representing BCD 11.

AAD Instruction - ADD converts unpacked BCD digits in the AH and AL
register into a single binary number in the AX register in preparation for a division
operation.
 Before executing AAD, place the Most significant BCD digit in
the AH register and Last significant in the AL register. When AAD is executed, the two
BCD digits are combined into a single binary number by setting AL=(AH*10)+AL and
clearing AH to 0.

Example:
 MOV AX,0205h ;The unpacked BCD number 25
 AAD ;After AAD , AH=0 and
 ;AL=19h (25)
 After the division AL will then contain the unpacked BCD quotient and
AH will contain the unpacked BCD remainder.

Example:
 ;AX=0607 unpacked BCD for 67 decimal
 ;CH=09H

 AAD ;Adjust to binary before division
 ;AX=0043 = 43H =67 decimal
 DIV CH ;Divide AX by unpacked BCD in CH
 ;AL = quotient = 07 unpacked BCD
 ;AH = remainder = 04 unpacked BCD

AAM Instruction - AAM converts the result of the multiplication of two valid
unpacked BCD digits into a valid 2-digit unpacked BCD number and takes AX as an
implicit operand.
 To give a valid result the digits that have been multiplied must be
in the range of 0 – 9 and the result should have been placed in the AX register. Because
both operands of multiply are required to be 9 or less, the result must be less than 81 and
thus is completely contained in AL.
 AAM unpacks the result by dividing AX by 10, placing the
quotient (MSD) in AH and the remainder (LSD) in AL.

Example:

 MOV AL, 5
 MOV BL, 7
 MUL BL ;Multiply AL by BL , result in AX
 AAM ;After AAM, AX =0305h (BCD 35)

AAS Instruction - AAS converts the result of the subtraction of two valid
unpacked BCD digits to a single valid BCD number and takes the AL register as an
implicit operand. The two operands of the subtraction must have its lower 4 bit contain
number in the range from 0 to 9 .The AAS instruction then adjust AL so that it contain a
correct BCD digit.

 MOV AX,0901H ;BCD 91
 SUB AL, 9 ;Minus 9
 AAS ; Give AX =0802 h (BCD 82)

 (a)

 ;AL =0011 1001 =ASCII 9
 ;BL=0011 0101 =ASCII 5
 SUB AL, BL ;(9 - 5) Result :
 ;AL = 00000100 = BCD 04,CF = 0
 AAS ;Result :
 ;AL=00000100 =BCD 04
 ;CF = 0 NO Borrow required

 (b)

 ;AL = 0011 0101 =ASCII 5
 ;BL = 0011 1001 = ASCII 9
SUB AL, BL ;(5 - 9) Result :
 ;AL = 1111 1100 = - 4
 ; in 2’s complement CF = 1
AAS ;Results :
 ;AL = 0000 0100 =BCD 04
 ;CF = 1 borrow needed .

ADD Instruction - These instructions add a number from source to a number
from some destination and put the result in the specified destination. The add with carry
instruction ADC, also add the status of the carry flag into the result. The source and
destination must be of same type , means they must be a byte location or a word location.
If you want to add a byte to a word, you must copy the byte to a word location and fill the
upper byte of the word with zeroes before adding.

EXAMPLE:

 ADD AL,74H ;Add immediate number 74H to
 ; content of AL

 ADC CL,BL ;Add contents of BL plus
 ;carry status to contents of CL.
 ;Results in CL

 ADD DX, BX ;Add contents of BX to contents
 ;of DX

 ADD DX, [SI] ;Add word from memory at
 ;offset [SI] in DS to contents of DX

 ; Addition of Un Signed numbers

 ADD CL, BL ;CL = 01110011 =115 decimal
 ;+ BL = 01001111 = 79 decimal
 ;Result in CL = 11000010 = 194 decimal

 ; Addition of Signed numbers

 ADD CL, BL ;CL = 01110011 = + 115 decimal

 ;+ BL = 01001111 = +79 decimal
 ;Result in CL = 11000010 = - 62 decimal
 ; Incorrect because result is too large to fit in 7 bits.

AND Instruction - This Performs a bitwise Logical AND of two operands. The
result of the operation is stored in the op1 and used to set the flags.
 AND op1, op2
 To perform a bitwise AND of the two operands, each bit of the result is
set to 1 if and only if the corresponding bit in both of the operands is 1, otherwise the bit
in the result I cleared to 0 .

 AND BH, CL ;AND byte in CL with byte in BH
 ;result in BH
 AND BX,00FFh ;AND word in BX with immediate
 ;00FFH. Mask upper byte, leave
 ;lower unchanged

 AND CX,[SI] ; AND word at offset [SI] in data
 ;segment with word in CX
 ;register . Result in CX register .

 ;BX = 10110011 01011110
 AND BX,00FFh ;Mask out upper 8 bits of BX
 ;Result BX = 00000000 01011110
 ;CF =0 , OF = 0, PF = 0, SF = 0 ,
 ;ZF = 0

CALL Instruction

•Direct within-segment (near or intrasegment)
•Indirect within-segment (near or intrasegment)
•Direct to another segment (far or intersegment)
•Indirect to another segment (far or intersegment)

CBW Instruction - Convert signed Byte to signed word

CLC Instruction - Clear the carry flag

CLD Instruction - Clear direction flag
CLI Instruction - Clear interrupt flag

CMC Instruction - Complement the carry flag

CMP Instruction - Compare byte or word -CMP destination, source.

CMPS/CMPSB/
 CMPSW Instruction - Compare string bytes or string words

CWD Instruction - Convert Signed Word to - Signed Double word

Example

CALL Instruction - This Instruction is used to transfer execution to a
subprogram or procedure. There are two basic types of CALL ’s : Near and Far.
 A Near CALL is a call to a procedure which is in the same
code segment as the CALL instruction .
 When 8086 executes the near CALL instruction it decrements the stack pointer by two
and copies the offset of the next instruction after the CALL on the stack. This offset
saved on the stack is referred as the return address, because this is the address that
execution will returns to after the procedure executes. A near CALL instruction will also
load the instruction pointer with the offset of the first instruction in the procedure.
 A RET instruction at the end of the procedure will return execution to the
instruction after the CALL by coping the offset saved on the stack back to IP.
 A Far CALL is a call to a procedure which is in a different
from that which contains the CALL instruction . When 8086 executes the Far CALL
instruction it decrements the stack pointer by two again and copies the content of CS
register to the stack. It then decrements the stack pointer by two again and copies the
offset contents offset of the instruction after the CALL to the stack. Finally it loads CS
with segment base of the segment which contains the procedure and IP with the offset of
the first instruction of the procedure in segment. A RET instruction at end of procedure
will return to the next instruction after the CALL by restoring the saved CS and IP from
the stack.

 ;Direct within-segment (near or intrasegment)

 CALL MULTO ;MULTO is the name of the procedure.
The assembler determines displacement of MULTO from the instruction after the
CALL and codes this displacement in as part of the instruction .

 ;Indirect within-segment (near or intrasegment)

 CALL BX ; BX contains the offset of the first
instruction of the procedure .Replaces contents of word of IP with contents o
register BX.

 CALL WORD PTR[BX] ;Offset of first instruction of procedure is in two
memory addresses in DS .Replaces contents of IP with contents of word memory
location in DS pointed to by BX.

;Direct to another segment- far or intersegment.

 CALL SMART ;SMART is the name of the Procedure

 SMART PROC FAR ; Procedure must be declare as an far

CBW Instruction - CBW converts the signed value in the AL register into an
equivalent 16 bit signed value in the AX register by duplicating the sign bit to the left.
 This instruction copies the sign of a byte in AL to all the
bits in AH. AH is then said to be the sign extension of AL.

 Example:
 ; AX = 00000000 10011011 = - 155 decimal
 CBW ; Convert signed byte in AL to signed word in AX.
 ; Result in AX = 11111111 10011011
 ; = - 155 decimal

CLC Instruction - CLC clear the carry flag (CF) to 0 This instruction has no
affect on the processor, registers, or other flags. It is often used to clear the CF before
returning from a procedure to indicate a successful termination. It is also use to clear the
CF during rotate operation involving the CF such as ADC, RCL, RCR .

 Example:
 CLC ;Clear carry flag.

CLD Instruction - This instruction reset the designation flag to zero. This

instruction has no effect on the registers or other flags. When the direction flag is cleared
/ reset SI and DI will automatically be incremented when one of the string instruction
such as MOVS, CMPS, SCAS,MOVSB and STOSB executes.

 Example :

 CLD ;Clear direction flag so that string pointers auto increment

CLI Instruction - This instruction resets the interrupt flag to zero. No other
flags are affected. If the interrupt flag is reset , the 8086 will not respond to an interrupt
signal on its INTR input. This CLI instruction has no effect on the nonmaskable interrupt
input, NMI

CMC Instruction - If the carry flag CF is a zero before this instruction, it will

be set to a one after the instruction. If the carry flag is one before this instruction, it will
be reset to a zero after the instruction executes. CMC has no effect on other flags.
 Example:
 CMC ;Invert the carry flag.

CWD Instruction - CWD converts the 16 bit signed value in the AX register
into an equivalent 32 bit signed value in DX: AX register pair by duplicating the sign bit
to the left.
 The CWD instruction sets all the bits in the DX register to
the same sign bit of the AX register. The effect is to create a 32- bit signed result that has
same integer value as the original 16 bit operand.

 Example:

 Assume AX contains C435h. If the CWD instruction is executed, DX
will contain FFFFh since bit 15 (MSB) of AX was 1. Both the original value of AX
(C435h) and resulting value of DX : AX (FFFFC435h) represents the same signed
number.

 Example:

 ;DX = 00000000 00000000
 ;AX = 11110000 11000111 = - 3897 decimal
 CWD ;Convert signed word in AX to signed double
 ;word in DX:AX
 ;Result DX = 11111111 11111111
 ;AX = 11110000 11000111 = -3897 decimal .

DAA Instruction - Decimal Adjust Accumulator

DAS Instruction - Decimal Adjust after Subtraction

DEC Instruction - Decrement destination register or memory DEC
destination.

DIV Instruction - Unsigned divide-Div source

ESC Instruction

 When a double word is divided by a word, the most significant word of
the double word must be in DX and the least significant word of the double word must be
in AX. After the division AX will contain the 16 –bit result (quotient) and DX will

contain a 16 bit remainder. Again , if an attempt is made to divide by zero or quotient is
too large to fit in AX (greater than FFFFH) the 8086 will do a type of 0 interrupt .

 Example:
 DIV CX ; (Quotient) AX= (DX:AX)/CX
 : (Reminder) DX=(DX:AX)%CX
 For DIV the dividend must always be in AX or DX and AX, but
the source of the divisor can be a register or a memory location specified by one of the 24
addressing modes.
 If you want to divide a byte by a byte, you must first put
the dividend byte in AL and fill AH with all 0’s . The SUB AH,AH instruction is a quick
way to do.
 If you want to divide a word by a word, put the dividend
word in AX and fill DX with all 0’s. The SUB DX,DX instruction does this quickly.

Example: ; AX = 37D7H = 14, 295 decimal
 ; BH = 97H = 151 decimal
 DIV BH ;AX / BH
 ; AX = Quotient = 5EH = 94 decimal
 ; AH = Remainder = 65H = 101 decimal

ESC Instruction - Escape instruction is used to pass instruction to a
coprocessor such as the 8087 math coprocessor which shares the address and data bus
with an 8086. Instruction for the coprocessor are represented by a 6 bit code embedded in
the escape instruction. As the 8086 fetches instruction byte, the coprocessor also catches
these bytes from data bus and puts them in its queue. The coprocessor treats all of the
8086 instruction as an NOP. When 8086 fetches an ESC instruction , the coprocessor
decodes the instruction and carries out the action specified by the 6 bit code. In most of
the case 8086 treats ESC instruction as an NOP.

HLT Instruction - HALT processing

IDIV Instruction - Divide by signed byte or word IDIV source

IMUL Instruction - Multiply signed number-IMUL source

IN Instruction - Copy data from a port
 IN accumulator, port

INC Instruction - Increment - INC destination

HALT Instruction - The HLT instruction will cause the 8086 to stop fetching
and executing instructions. The 8086 will enter a halt state. The only way to get the
processor out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input .

IDIV Instruction - This instruction is used to divide a signed word by a signed
byte or to divide a signed double word by a signed word.

Example:

 IDIV BL ;Signed word in AX is divided by signed byte in BL

IMUL Instruction - This instruction performs a signed multiplication.

 IMUL op ;In this form the accumulator is the multiplicand and op is
the multiplier. op may be a register or a memory operand.

 IMUL op1, op2 ;In this form op1 is always be a register operand and op2
may be a register or a memory operand.

Example:

 IMUL BH ;Signed byte in AL times multiplied by
 ;signed byte in BH and result in AX .

Example:
 ; 69 * 14
 ; AL = 01000101 = 69 decimal
 ; BL = 00001110 = 14 decimal
 IMUL BL ;AX = 03C6H = + 966 decimal
 ;MSB = 0 because positive result

 ; - 28 * 59
 ; AL = 11100100 = - 28 decimal
 ;BL = 00001110 = 14 decimal
 IMUL BL ;AX = F98Ch = - 1652 decimal
 ; MSB = 1 because negative result

IN Instruction - This IN instruction will copy data from a port to the AL or
AX register.
 For the Fixed port IN instruction type the 8 – bit port address of a
port is specified directly in the instruction.

Example:

 IN AL,0C8H ;Input a byte from port 0C8H to AL
 IN AX, 34H ;Input a word from port 34H to AX

 A_TO_D EQU 4AH

 IN AX, A_TO_D ;Input a word from port 4AH to AX

 For a variable port IN instruction, the port address is loaded in DX
register before IN instruction. DX is 16 bit. Port address range from 0000H – FFFFH.

Example:

 MOV DX, 0FF78H ;Initialize DX point to port
 IN AL, DX ;Input a byte from a 8 bit port
 ;0FF78H to AL

 IN AX, DX ;Input a word from 16 bit port to
 ;0FF78H to AX.

INC Instruction - INC instruction adds one to the operand and sets the flag
according to the result. INC instruction is treated as an unsigned binary number.

Example:
 ; AX = 7FFFh
 INC AX ;After this instruction AX = 8000h

 INC BL ; Add 1 to the contents of BL register
 INC CL ; Add 1 to the contents of CX register.

INT Instruction - Interrupt program

INTO Instruction - Interrupt on overflow.

IRET Instruction - Interrupt return

JA/JNBE Instruction - Jump if above/Jump if not below nor equal.

JAE/JNB/
 JNC Instructions - Jump if above or equal/ Jump if not below/
 Jump if no carry.

JA / JNBE - This instruction performs the Jump if above (or) Jump if not
below or equal operations according to the condition, if CF and ZF = 0 .

Example: (1)
 CMP AX, 4371H ;Compare by subtracting 4371H
 ;from AX

 JA RUN_PRESS ;Jump to label RUN_PRESS if
 ;AX above 4371H
 (2)
 CMP AX, 4371H ;Compare (AX – 4371H)
 JNBE RUN_PRESS ;Jump to label RUN_PRESS if
 ;AX not below or equal to 4371H

JAE / JNB / JNC - This instructions performs the Jump if above or equal,
Jump if not below, Jump if no carry operations according to the condition, if CF = 0.

Examples:

1. CMP AX, 4371H ;Compare (AX – 4371H)
 JAE RUN ;Jump to the label RUN if AX is
 ;above or equal to 4371H .
2. CMP AX, 4371H ;Compare (AX – 4371H)
 JNB RUN_1 ;Jump to the label RUN_1 if AX
 ;is not below than 4371H
3. ADD AL, BL ; Add AL, BL. If result is with in JNC OK
 ;acceptable range, continue

JB/JC/JNAE Instruction - Jump if below/Jump if carry/
 Jump if not above nor equal

JBE/JNA Instructions - Jump if below or equal /
 Jump if not above

JCXZ Instruction - Jump if the CX register is zero

JE/JZ Instruction - Jump if equal/Jump if zero

JG/JNLE Instruction - Jump if greater/Jump if not
 less than nor equal

JB/JC/JNAE Instruction - This instruction performs the Jump if below (or)
Jump if carry (or) Jump if not below/ equal operations according to the condition,
 if CF = 1

Example:

1.CMP AX, 4371H ;Compare (AX – 4371H)
 JB RUN_P ;Jump to label RUN_P if AX is
 ;below 4371H

2.ADD BX, CX ;Add two words and Jump to

 JC ERROR ; label ERROR if CF = 1

JBE/JNA Instruction - This instruction performs the Jump if below or
equal (or) Jump if not above operations according to the condition, if CF and ZF = 1

Example:

 CMP AX, 4371H ;Compare (AX – 4371H)
 JBA RUN ;Jump to label RUN if AX is
 ;below or equal to 4371H

 CMP AX, 4371H ;Compare (AX – 4371H)
 JNA RUN_R ;Jump to label RUN_R if AX is
 ;not above than 4371H

JCXZ Instruction - This instruction performs the Jump if CX register is zero.
If CX does not contain all zeros, execution will simply proceed to the next instruction.

Example:

 JCXZ SKIP_LOOP ;If CX = 0, skip the process

 NXT: SUB [BX], 07H ;Subtract 7 from data value
 INC BX ; BX point to next value
 LOOP NXT ; Loop until CX = 0
 SKIP_LOOP ;Next instruction

JE/JZ Instruction Instruction - This instruction performs the Jump if equal
(or) Jump if zero operations according to the condition if ZF = 1

Example:

 NXT:CMP BX, DX ;Compare (BX – DX)
 JE DONE ;Jump to DONE if BX = DX,
 SUB BX, AX ;Else subtract Ax
 INC CX ;Increment counter
 JUMP NXT ;Check again
 DONE: MOV AX, CX ;Copy count to AX

Example:

 IN AL, 8FH ;read data from port 8FH
 SUB AL, 30H ;Subtract minimum value

 JZ STATR ; Jump to label if result of
 ;subtraction was 0

JG/JNLE Instruction - This instruction performs the Jump if greater (or)
Jump if not less than or equal operations according to the condition if ZF =0 and SF =
OF

Example:
 CMP BL, 39H ;Compare by subtracting
 ;39H from BL
 JG NEXT1 ;Jump to label if BL is
 ;more positive than 39H

 CMP BL, 39H ;Compare by subtracting
 ;39H from BL
 JNLE NEXT2 ;Jump to label if BL is not
 ;less than or equal 39H

JGE/JNL Instruction - Jump if greater than or equal/
 Jump if not less than

JL/JNGE Instruction - Jump if less than/Jump if not
 greater than or equal

JLE/JNG Instruction - Jump if less than or equal/
 Jump if not greater

JMP Instruction - Unconditional jump to -
 specified destination

JGE/JNL Instruction - This instruction performs the Jump if greater than
or equal / Jump if not less than operation according to the condition if SF = OF

Example:

 CMP BL, 39H ;Compare by the
 ;subtracting 39H from BL
 JGE NEXT11 ;Jump to label if BL is
 ;more positive than 39H
 ; or equal to 39H

 CMP BL, 39H ;Compare by subtracting
 ;39H from BL
 JNL NEXT22 ;Jump to label if BL is not
 ;less than 39H

JL/JNGE Instruction - This instruction performs the Jump if less than /
Jump if not greater than or equal operation according to the condition, if SF ≠ OF

Example:

 CMP BL, 39H ;Compare by subtracting 39H
 ;from BL
 JL AGAIN ;Jump to the label if BL is more
 ;negative than 39H

 CMP BL, 39H ;Compare by subtracting 39H
 ;from BL
 JNGE AGAIN1 ; Jump to the label if BL is not
 ;more positive than 39H or
 ;not equal to 39H

JLE/JNG Instruction - This instruction performs the Jump if less than or
equal / Jump if not greater operation according to the condition, if ZF=1 and SF ≠ OF

Example:

 CMP BL, 39h ; Compare by subtracting 39h
 ;from BL
 JLE NXT1 ;Jump to the label if BL is more
 ;negative than 39h or equal to 39h

 CMP BL, 39h ;Compare by subtracting 39h
 ;from BL
 JNG AGAIN2 ; Jump to the label if BL is not
 ;more positive than 39h

JNA/JBE Instruction - Jump if not above/Jump if
 below or equal

JNAE/JB Instruction - Jump if not above or equal/
 Jump if below

JNB/JNC/JAE Instruction - Jump if not below/Jump if
 no carry/Jump if above or equal

JNE/JNZ Instruction - Jump if not equal/Jump if
 not zero

JNE/JNZ Instruction - This instruction performs the Jump if not
equal / Jump if not zero operation according to the condition, if ZF=0

Example:

 NXT: IN AL, 0F8H ;Read data value from port
 CMP AL, 72 ;Compare (AL – 72)
 JNE NXT ;Jump to NXT if AL ≠ 72
 IN AL, 0F9H ;Read next port when AL = 72
 MOV BX, 2734H ; Load BX as counter
 NXT_1:ADD AX, 0002H ;Add count factor to AX
 DEC BX ;Decrement BX
 JNZ NXT_1 Repeat until BX = 0

JNG/JLE Instruction - Jump if not greater/ Jump
 if less than or equal

JNGE/JL Instruction - Jump if not greater than nor
 equal/Jump if less than

JNL/JGE Instruction - Jump if not less than/ Jump
 if greater than or equal

JNLE/JG Instruction - Jump if not less than nor
 equal to /Jump if greater than

JNO Instruction – Jump if no overflow

JNP/JPO Instruction – Jump if no parity/ Jump if parity odd

JNS Instruction - Jump if not signed (Jump if positive)

JNZ/JNE Instruction - Jump if not zero / jump if not equal

JO Instruction - Jump if overflow
JNO Instruction – This instruction performs the Jump if no overflow

operation according to the condition, if OF=0

Example:
 ADD AL, BL ; Add signed bytes in AL and BL
 JNO DONE ;Process done if no overflow -
 MOV AL, 00H ;Else load error code in AL

DONE: OUT 24H, AL ; Send result to display

JNP/JPO Instruction – This instruction performs the Jump if not parity /
Jump if parity odd operation according to the condition, if PF=0

Example:
 IN AL, 0F8H ;Read ASCII char from UART
 OR AL, AL ;Set flags
 JPO ERROR1 ;If even parity executed, if not
 ;send error message

JNS Instruction - This instruction performs the Jump
if not signed (Jump if positive) operation according to the condition, if SF=0

Example:

 DEC AL ;Decrement counter
 JNS REDO ; Jump to label REDO if counter has not
 ;decremented to FFH

JO Instruction - This instruction performs Jump if overflow
operation according to the condition OF = 0

Example:

 ADD AL, BL ;Add signed bits in AL and BL
 JO ERROR ; Jump to label if overflow occur
 ;in addition
 MOV SUM, AL ; else put the result in memory
 ;location named SUM

JPE/JP Instruction - Jump if parity even/ Jump if
 parity

JPO/JNP Instruction - Jump if parity odd/ Jump if

 no parity

JS Instruction - Jump if signed (Jump if negative)

JZ/JE Instruction - Jump if zero/Jump if equal
JPE/JP Instruction - This instruction performs the Jump if parity

even / Jump if parity operation according to the condition, if PF=1

Example:

 IN AL, 0F8H ;Read ASCII char from UART
 OR AL, AL ;Set flags
 JPE ERROR2 ;odd parity is expected, if not
 ;send error message

JS Instruction - This instruction performs the Jump if sign
operation according to the condition, if SF=1

Example:

 ADD BL, DH ;Add signed bytes DH to BL
 JS JJS_S1 ;Jump to label if result is
 ;negative

LAHF Instruction - Copy low byte of flag
 register to AH

LDS Instruction - Load register and Ds with words from memory –
 LDS register, memory address of first word

LEA Instruction - Load effective address-LEA
 register, source

LES Instruction - Load register and ES with
 words from memory –LES
 register, memory address of
 first word.

LAHF Instruction - LAHF instruction copies the value of SF, ZF, AF,
PF, CF, into bits of 7, 6, 4, 2, 0 respectively of AH register. This LAHF instruction was
provided to make conversion of assembly language programs written for 8080 and 8085
to 8086 easier.

LDS Instruction - This instruction loads a far pointer from the
memory address specified by op2 into the DS segment register and the op1 to the register.

LDS op1, op2

Example:

 LDS BX, [4326] ; copy the contents of the memory at
displacement 4326H in DS to BL, contents of the 4327H to BH. Copy contents of
4328H and 4329H in DS to DS register.

LEA Instruction - This instruction indicates the offset of the variable or
memory location named as the source and put this offset in the indicated 16 – bit register.

Example:

 LEA BX, PRICE ;Load BX with offset of PRICE
 ;in DS
 LEA BP, SS:STAK ;Load BP with offset of STACK
 ;in SS
 LEA CX, [BX][DI] ;Load CX with EA=BX + DI

LOCK Instruction - Assert bus lock signal

LODS/LODSB/
 LODSW Instruction - Load string byte into AL or
 Load string word into AX.

LOOP Instruction - Loop to specified
 label until CX = 0

LOOPE /
 LOOPZ Instruction - loop while CX ≠ 0 and
 ZF = 1

LODS/LODSB/LODSW Instruction - This instruction copies a byte from a
string location pointed to by SI to AL or a word from a string location pointed to by SI to
AX. If DF is cleared to 0,SI will automatically incremented to point to the next element
of string.

Example:

 CLD ;Clear direction flag so SI is auto incremented

 MOV SI, OFFSET SOURCE_STRING ;point SI at start of the string

 LODS SOUCE_STRING ;Copy byte or word from
 ;string to AL or AX

LOOP Instruction - This instruction is used to repeat a series of

instruction some number of times

Example:
 MOV BX, OFFSET PRICE
 ;Point BX at first element in array
 MOV CX, 40 ;Load CX with number of
 ;elements in array

NEXT: MOV AL, [BX] ; Get elements from array
 ADD AL, 07H ;Ad correction factor
 DAA ; decimal adjust result
 MOV [BX], AL ; Put result back in array
 LOOP NEXT ; Repeat until all elements
 ;adjusted.

LOOPE / LOOPZ Instruction - This instruction is used to repeat a group of
instruction some number of times until CX = 0 and ZF = 0

Example:
 MOV BX, OFFSET ARRAY
 ;point BX at start of the array
 DEC BX
 MOV CX, 100 ;put number of array elements in
 ;CX

NEXT:INC BX ;point to next element in array
 CMP [BX], 0FFH ;Compare array elements FFH
 LOOP NEXT

LOOPNE/LOOPNZ Instruction - This instruction is used to repeat a group of
instruction some number of times until CX = 0 and ZF = 1

Example:

 MOV BX, OFFSET ARRAY1
 ;point BX at start of the array
 DEC BX
 MOV CX, 100 ;put number of array elements in
 ;CX

NEXT:INC BX ;point to next elements in array
 CMP [BX], 0FFH ;Compare array elements 0DH
 LOOPNE NEXT

MOV Instruction - MOV destination, source

MOVS/MOVSB/
 MOVSW Instruction - Move string byte or string
 word-MOVS destination, source

MUL Instruction - Multiply unsigned bytes or
 words-MUL source

NEG Instruction - From 2’s complement –
 NEG destination

NOP Instruction - Performs no operation.
MOV Instruction - The MOV instruction copies a word or a byte of data from

a specified source to a specified destination .
 MOV op1, op2

Example:

 MOV CX, 037AH ; MOV 037AH into the CX.
 MOV AX, BX ;Copy the contents of register BX
 ;to AX
 MOV DL,[BX] ;Copy byte from memory at BX
 ;to DL , BX contains the offset of byte in DS.

MUL Instruction - This instruction multiplies an unsigned multiplication of
the accumulator by the operand specified by op. The size of op may be a register or
memory operand .

MUL op

 Example: ;AL = 21h (33 decimal)
 ;BL = A1h(161 decimal)
 MUL BL ;AX =14C1h (5313 decimal) since AH≠0,
 ;CF and OF will set to 1.
 MUL BH ; AL times BH, result in AX
 MUL CX ;AX times CX, result high word in DX,
 ;low word in AX.

NEG Instruction - NEG performs the two’s complement subtraction of the
operand from zero and sets the flags according to the result.
 ;AX = 2CBh
 NEG AX ;after executing NEG result AX =FD35h.

 Example:

 NEG AL ;Replace number in AL with its 2’s complement
 NEG BX ;Replace word in BX with its 2’s complement

NEG BYTE PTR[BX]; Replace byte at offset BX in
 ; DS with its 2’s complement

NOP Instruction - This instruction simply uses up the three clock cycles and

increments the instruction pointer to point to the next instruction. NOP does not
change the status of any flag. The NOP instruction is used to increase the delay of a
delay loop.

NOT Instruction - Invert each bit of operand –NOT destination.

OR Instruction - Logically OR corresponding of two
 operands- OR destination, source.

OUT Instruction - Output a byte or word to a port –
 OUT port, accumulator AL or AX.

POP Instruction - POP destination

NOT Instruction - NOT perform the bitwise complement of op and stores the
result back into op.
 NOT op

 Example :

 NOT BX ;Complement contents of BX register.

 ;DX =F038h
 NOT DX ;after the instruction DX = 0FC7h

OR Instruction - OR instruction perform the bit wise logical OR of two
operands .Each bit of the result is cleared to 0 if and only if both corresponding bits in
each operand are 0, other wise the bit in the result is set to 1.
 OR op1, op2

 Examples :

 OR AH, CL ;CL ORed with AH, result in AH.
 ;CX = 00111110 10100101
 OR CX,FF00h ;OR CX with immediate FF00h
 ;result in CX = 11111111 10100101
 ;Upper byte are all 1’s lower bytes
 ;are unchanged.

OUT Instruction - The OUT instruction copies a byte from AL or a word from
AX or a double from the accumulator to I/O port specified by op. Two forms of OUT
instruction are available : (1) Port number is specified by an immediate byte constant, (0

- 255).It is also called as fixed port form. (2) Port number is provided in the DX register
(0 – 65535)

Example: (1)

 OUT 3BH, AL ;Copy the contents of the AL to port 3Bh
 OUT 2CH,AX ;Copy the contents of the AX to port 2Ch

 (2)
 MOV DX, 0FFF8H;Load desired port address in DX
 OUT DX, AL ; Copy the contents of AL to
 ;FFF8h
 OUT DX, AX ;Copy content of AX to port
 ;FFF8H

POP Instruction - POP instruction copies the word at the current top of the
stack to the operand specified by op then increments the stack pointer to point to the next
stack.

Example:

POP DX ;Copy a word from top of the stack to
; DX and increments SP by 2.

 POP DS ; Copy a word from top of the stack to
 ; DS and increments SP by 2.

 POP TABLE [BX]

 ;Copy a word from top of stack to memory in DS with
 ;EA = TABLE + [BX].

POPF Instruction - Pop word from top of stack to flag - register.

PUSH Instruction - PUSH source

PUSHF Instruction - Push flag register on the stack

RCL Instruction - Rotate operand around to the left through CF –
RCL destination, source.

 RCR Instruction - Rotate operand around to the right

 through CF- RCR destination, count

POPF Instruction - This instruction copies a word from the two memory
location at the top of the stack to flag register and increments the stack pointer by 2.

PUSH Instruction - PUSH instruction decrements the stack pointer by 2 and

copies a word from a specified source to the location in the stack segment where the stack
pointer pointes.

Example:
 PUSH BX ;Decrement SP by 2 and copy BX to stack
 PUSH DS ;Decrement SP by 2 and copy DS to stack
 PUSH TABLE[BX] ;Decrement SP by 2 and copy word
 ;from memory in DS at
 ;EA = TABLE + [BX] to stack .

PUSHF Instruction - This instruction decrements the SP by 2 and copies
the word in flag register to the memory location pointed to by SP.

RCL Instruction - RCL instruction rotates the bits in the operand
specified by op1 towards left by the count specified in op2.The operation is circular, the
MSB of operand is rotated into a carry flag and the bit in the CF is rotated around into the
LSB of operand. RCR op1, op2

Example:

 CLC ;put 0 in CF
 RCL AX, 1 ;save higher-order bit of AX in CF
 RCL DX, 1 ;save higher-order bit of DX in CF
 ADC AX, 0 ; set lower order bit if needed.

Example :

 RCL DX, 1 ;Word in DX of 1 bit is moved to left, and
 ;MSB of word is given to CF and
 ;CF to LSB.
 ; CF=0, BH = 10110011
 RCL BH, 1 ;Result : BH =01100110
 ;CF = 1, OF = 1 because MSB changed

 ;CF =1,AX =00011111 10101001
 MOV CL, 2 ;Load CL for rotating 2 bit position
 RCL AX, CL ;Result: CF =0, OF undefined
 ;AX = 01111110 10100110

RCR Instruction - RCR instruction rotates the bits in the operand specified by
op1 towards right by the count specified in op2. RCR op1, op2

Example:(1)

 RCR BX, 1 ;Word in BX is rotated by 1 bit towards
 ;right and CF will contain MSB bit and
 ;LSB contain CF bit .

 (2)

;CF = 1, BL = 00111000
 RCR BL, 1 ;Result: BL = 10011100, CF =0
 ;OF = 1 because MSB is changed to 1.

REP/REPE/REPZ/
 REPNE/REPNZ - (Prefix) Repeat String instruction until specified
 condition exist

RET Instruction – Return execution from procedure to calling
 program.

ROL Instruction - Rotate all bits of operand left, MSB to LSB

 ROL destination, count.

ROL Instruction - ROL instruction rotates the bits in the operand specified by
op1 towards left by the count specified in op2. ROL moves each bit in the operand to
next higher bit position. The higher order bit is moved to lower order position. Last bit
rotated is copied into carry flag.

 ROL op1, op2

Example: (1)

 ROL AX, 1 ;Word in AX is moved to left by 1 bit
 ;and MSB bit is to LSB, and CF

 ;CF =0 ,BH =10101110
 ROL BH, 1 ;Result: CF ,Of =1 , BH = 01011101

Example : (2)
 ;BX = 01011100 11010011
 ;CL = 8 bits to rotate
 ROL BH, CL ;Rotate BX 8 bits towards left
 ;CF =0, BX =11010011 01011100

ROR Instruction - Rotate all bits of operand right, LSB to MSB –
 ROR destination, count

SAHF Instruction – Copy AH register to low byte of flag register

ROR Instruction - ROR instruction rotates the bits in the operand op1 to
wards right by count specified in op2. The last bit rotated is copied into CF.

 ROR op1, op2

Example:
 (1)

 ROR BL, 1 ;Rotate all bits in BL towards right by 1
 ;bit position, LSB bit is moved to MSB

;and CF has last rotated bit.

 (2)

 ;CF =0, BX = 00111011 01110101
 ROR BX, 1 ;Rotate all bits of BX of 1 bit position
 ;towards right and CF =1,
 BX = 10011101 10111010

Example (3)
 ;CF = 0, AL = 10110011,
 MOVE CL, 04H ; Load CL
 ROR AL, CL ;Rotate all bits of AL towards right
 ;by 4 bits, CF = 0 ,AL = 00111011

SAHF Instruction - SAHF copies the value of bits 7, 6, 4, 2, 0 of the AH
register into the SF, ZF, AF, PF, and CF respectively. This instruction was provided to
make easier conversion of assembly language program written for 8080 and 8085 to
8086.

SAL/SHL Instruction - Shift operand bits left, put zero in LSB(s)
 SAL/AHL destination, count

SAR Instruction - Shift operand bits right, new MAB = old MSB
 SAR destination, count.

SBB Instruction - Subtract with borrow SBB destination, source

SAL / SHL Instruction - SAL instruction shifts the bits in the operand
specified by op1 to its left by the count specified in op2. As a bit is shifted out of LSB
position a 0 is kept in LSB position. CF will contain MSB bit.
 SAL op1,op2

Example:
 ;CF = 0, BX = 11100101 11010011
 SAL BX, 1 ;Shift BX register contents by 1 bit
 ;position towards left
 ;CF = 1, BX = 11001011 1010011

SAR Instruction - SAR instruction shifts the bits in the operand specified by
op1 towards right by count specified in op2.As bit is shifted out a copy of old MSB is
taken in MSB
 MSB position and LSB is shifted to CF.

SAR op1, op2

Example: (1)

; AL = 00011101 = +29 decimal, CF = 0
 SAR AL, 1 ;Shift signed byte in AL towards right
 ;(divide by 2)
 ;AL = 00001110 = + 14 decimal, CF = 1

(2)

 ;BH = 11110011 = - 13 decimal, CF = 1
 SAR BH, 1 ;Shifted signed byte in BH to right
 ;BH = 11111001 = - 7 decimal, CF = 1

SBB Instruction - SUBB instruction subtracts op2 from op1, then subtracts 1
from op1 is CF flag is set and result is stored in op1 and it is used to set the flag.

Example:

 SUB CX, BX ;CX – BX . Result in CX

 SUBB CH, AL ; Subtract contents of AL and
 ;contents CF from contents of CH .
 ;Result in CH

 SUBB AX, 3427H ;Subtract immediate number
 ;from AX

Example:

•Subtracting unsigned number
 ; CL = 10011100 = 156 decimal
 ; BH = 00110111 = 55 decimal
 SUB CL, BH ; CL = 01100101 = 101 decimal
 ; CF, AF, SF, ZF = 0, OF, PF = 1
•Subtracting signed number
 ; CL = 00101110 = + 46 decimal
 ; BH = 01001010= + 74 decimal
 SUB CL, BH ;CL = 11100100 = - 28 decimal
 ;CF = 1, AF, ZF =0,
 ;SF = 1 result negative

STD Instruction - Set the direction flag to 1

STI Instruction - Set interrupt flag (IF)

STOS/STOSB/
 STOSW Instruction - Store byte or word in string.

SCAS/SCASB/ - Scan string byte or a
 SCASW Instruction string word.

SHR Instruction - Shift operand bits right, put
 zero in MSB

STC Instruction - Set the carry flag to 1
SHR Instruction - SHR instruction shifts the bits in op1 to right by the

number of times specified by op2 .

Example:
(1)

 SHR BP, 1 ; Shift word in BP by 1 bit position to right
 ; and 0 is kept to MSB

 (2)

 MOV CL, 03H ;Load desired number of shifts into CL

SHR BYTE PYR[BX] ;Shift bytes in DS at offset BX and
;rotate 3 bits to right and keep 3 0’s in MSB

 (3)
;SI = 10010011 10101101 , CF = 0

 SHR SI, 1 ; Result: SI = 01001001 11010110

 ; CF = 1, OF = 1, SF = 0, ZF = 0

TEST Instruction – AND operand to update flags

WAIT Instruction - Wait for test signal or interrupt signal

XCHG Instruction - Exchange XCHG destination, source

XLAT/
 XLATB Instruction - Translate a byte in AL

XOR Instruction - Exclusive OR corresponding bits of two operands –
 XOR destination, source

TEST Instruction - This instruction ANDs the contents of a source byte or
word with the contents of specified destination word. Flags are updated but neither
operand is changed . TEST instruction is often used to set flags before a condition jump
instruction

Examples:

 TEST AL, BH ;AND BH with AL. no result is
 ;stored . Update PF, SF, ZF

 TEST CX, 0001H ;AND CX with immediate
 ;number
 ;no result is stored, Update PF,
 ;SF

Example :
 ;AL = 01010001

 TEST Al, 80H ;AND immediate 80H with AL to
 ;test f MSB of AL is 1 or 0
 ;ZF = 1 if MSB of AL = 0
 ;AL = 01010001 (unchanged)
 ;PF = 0 , SF = 0
 ;ZF = 1 because ANDing produced is 00

WAIT Instruction - When this WAIT instruction executes, the 8086
enters an idle condition. This will stay in this state until a signal is asserted on TEST
input pin or a valid interrupt signal is received on the INTR or NMI pin.

 FSTSW STATUS ; copy 8087 status word to memory
 FWAIT ; wait for 8087 to finish before-
 ; doing next 8086 instruction

 MOV AX, STATUS ;copy status word to AX to
 ;check bits

In this code we are adding up of FWAIT instruction so that it will stop the execution of
the command until the above instruction is finishes it’s work .so that you are not loosing
data and after that you will allow to continue the execution of instructions.

XCHG Instruction - The Exchange instruction exchanges the contents of
the register with the contents of another register (or) the contents of the register with the
contents of the memory location. Direct memory to memory exchange are not supported.

 XCHG op1, op2

 The both operands must be the same size and one of the operand must always be a
register .

Example:

 XCHG AX, DX ;Exchange word in AX with word in DX
 XCHG BL, CH ;Exchange byte in BL with byte in CH

XCHG AL, Money [BX] ;Exchange byte in AL with byte
 ;in memory at EA.

XOR Instruction - XOR performs a bit wise logical XOR of the operands

specified by op1 and op2. The result of the operand is stored in op1 and is used to set the
flag.
 XOR op1, op2
 Example : (Numerical)
 ; BX = 00111101 01101001
 ;CX = 00000000 11111111
 XOR BX, CX ;Exclusive OR CX with BX
 ;Result BX = 00111101 10010110

Assembler Directives

ASSUME

DB - Defined Byte.

DD - Defined Double Word

DQ - Defined Quad Word

DT - Define Ten Bytes

DW - Define Word

ASSUME Directive - The ASSUME directive is used to tell the assembler

that the name of the logical segment should be used for a specified segment. The 8086
works directly with only 4 physical segments: a Code segment, a data segment, a stack
segment, and an extra segment.

Example:
 ASUME CS:CODE ;This tells the assembler that the logical
segment named CODE contains the instruction statements for the program and should be
treated as a code segment.
 ASUME DS:DATA ;This tells the assembler that for any
instruction which refers to a data in the data segment, data will found in the logical
segment DATA.

DB - DB directive is used to declare a byte-type variable or to store a
byte in memory location.

Example:

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,

; named as PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes and
; initialize with ASCII code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in memory and
give it the name as TEMP, but leave the 100 bytes uninitialized. Program instructions
will load values into these locations.

DW - The DW directive is used to define a variable of type word or to
reserve storage location of type word in memory.

Example:

 MULTIPLIER DW 437Ah ; this declares a variable of type
word and named it as MULTIPLIER. This variable is initialized with the value 437Ah
when it is loaded into memory to run.

 EXP1 DW 1234h, 3456h, 5678h ; this declares an array of 3 words
and initialized with specified values.

 STOR1 DW 100 DUP(0); Reserve an array of 100 words of
memory and initialize all words with 0000.Array is named as STOR1.

END - END directive is placed after the last statement of a program to tell
the assembler that this is the end of the program module. The assembler will ignore any
statement after an END directive. Carriage return is required after the END directive.

ENDP - ENDP directive is used along with the name of the procedure to
indicate the end of a procedure to the assembler

Example:
 SQUARE_NUM PROCE ; It start the procedure
 ;Some steps to find the square root of a number

 SQUARE_NUM ENDP ;Hear it is the End for the procedure

END - End Program

ENDP - End Procedure

ENDS - End Segment

EQU - Equate

EVEN - Align on Even Memory Address

EXTRN

ENDS - This ENDS directive is used with name of the segment to indicate
the end of that logic segment.

Example:
 CODE SEGMENT ;Hear it Start the logic
 ;segment containing code

; Some instructions statements to perform
;the logical operation

 CODE ENDS ;End of segment named as
 ;CODE

EQU - This EQU directive is used to give a name to some value or to a symbol.
Each time the assembler finds the name in the program, it will replace the name with the
value or symbol you given to that name.

Example:

FACTOR EQU 03H ; you has to write this statement at the starting of your
program and later in the program you can use this as follows

 ADD AL, FACTOR ; When it codes this instruction the
assembler will code it as ADDAL, 03H

 ;The advantage of using EQU in this manner is, if FACTOR is used many no of
times in a program and you want to change the value, all you had to do is change the
EQU statement at beginning, it will changes the rest of all.

EVEN - This EVEN directive instructs the assembler to increment the
location of the counter to the next even address if it is not already in the even address. If
the word is at even address 8086 can read a memory in 1 bus cycle.
 If the word starts at an odd address, the 8086 will take 2
bus cycles to get the data. A series of words can be read much more quickly if they are at
even address. When EVEN is used the location counter will simply incremented to next
address and NOP instruction is inserted in that incremented location.

Example:

 DATA1 SEGMENT
 ; Location counter will point to 0009 after assembler reads

 ;next statement

 SALES DB 9 DUP(?) ;declare an array of 9 bytes
 EVEN ; increment location counter to 000AH
 RECORD DW 100 DUP(0) ;Array of 100 words will start from an even
address for quicker read
 DATA1 ENDS

GROUP - Group Related Segments

LABLE

NAME

OFFSET

ORG - Originate

GROUP - The GROUP directive is used to group the logical
segments named after the directive into one logical group segment.

INCLUDE - This INCLUDE directive is used to insert a block of source
code from the named file into the current source module.

PROC - Procedure

PTR - Pointer

PUBLC

SEGMENT

SHORT

TYPE
PROC - The PROC directive is used to identify the start of a procedure.

The term near or far is used to specify the type of the procedure.

Example:

 SMART PROC FAR ; This identifies that the start of a
procedure named as SMART and instructs the assembler that the procedure is far .
 SMART ENDP
 This PROC is used with ENDP to indicate the break of the procedure.

PTR - This PTR operator is used to assign a specific type of a variable or
to a label.

Example:
 INC [BX] ; This instruction will not know whether to increment the
byte pointed to by BX or a word pointed to by BX.
 INC BYTE PTR [BX] ;increment the byte
 ;pointed to by BX
 This PTR operator can also be used to override the declared type of
variable . If we want to access the a byte in an array WORDS DW 437Ah,
0B97h,
 MOV AL, BYTE PTR WORDS

PUBLIC - The PUBLIC directive is used to instruct the assembler that a
specified name or label will be accessed from other modules.

Example:
 PUBLIC DIVISOR, DIVIDEND ;these two variables are public so
these are available to all modules.
 If an instruction in a module refers to a variable in another
assembly module, we can access that module by declaring as EXTRN directive.

TYPE - TYPE operator instructs the assembler to determine the type of a
variable and determines the number of bytes specified to that variable.

Example:

 Byte type variable – assembler will give a value 1
 Word type variable – assembler will give a value 2
 Double word type variable – assembler will give a value 4

 ADD BX, TYPE WORD_ ARRAY ; hear we want to increment BX to
point to next word in an array of words.

DOS Function Calls

AH 00H : Terminate a Program
AH 01H : Read the Keyboard
AH 02H : Write to a Standard Output Device
AH 08H : Read a Standard Input without Echo
AH 09H : Display a Character String
AH 0AH : Buffered keyboard Input
INT 21H : Call DOS Function

Interface

• We have four common types of memory:
• Read only memory (ROM)
• Flash memory (EEPROM)
• Static Random access memory (SARAM)
• Dynamic Random access memory (DRAM).
• Pin connections common to all memory devices are: The

address input, data output or input/outputs, selection input
and control input used to select a read or write operation.

Next Page

• Address connections: All memory devices have address
inputs that select a memory location within the memory
device. Address inputs are labeled from A0 to An.

• Data connections: All memory devices have a set of data
outputs or input/outputs. Today many of them have bi-
directional common I/O pins.

• Selection connections: Each memory device has an input,
that selects or enables the memory device. This kind of
input is most often called a chip select (CS), chip enable
(CE) or simply select (S) input.

Next Page

Next Page

CS OE

A0

A1

A2

AN

O0

O1

O2

ON

WRITEWE

SELECT READ
MEMORY COMPONENT ILLUSTRATING THE ADDRESS, DATA AND

,
CONTROL CONNECTIONS

ADDRESS
CONNECTION

OUTPUT OR
INPUT/OUTPUT
CONNECTION

• RAM memory generally has at least one CS or S input and
ROM at least one CE.

• If the CE, CS, S input is active the memory device perform
the read or write.

• If it is inactive the memory device cannot perform read or
write operation.

• If more than one CS connection is present, all most be
active to perform read or write data.

• Control connections: A ROM usually has only one control
input, while a RAM often has one or two control inputs.

Next Page

• The control input most often found on the ROM is the
output enable (OE) or gate (G), this allows data to flow
out of the output data pins of the ROM.

• If OE and the selected input are both active, then the
output is enable, if OE is inactive, the output is disabled at
its high-impedance state.

• The OE connection enables and disables a set of three-state
buffer located within the memory device and must be
active to read data.

Next Page

• A RAM memory device has either one or two control
inputs. If there is one control input it is often called R/W.

• This pin selects a read operation or a write operation only
if the device is selected by the selection input (CS).

• If the RAM has two control inputs, they are usually labeled
WE or W and OE or G.

• (WE) write enable must be active to perform a memory
write operation and OE must be active to perform a
memory read operation.

• When these two controls WE and OE are present, they
must never be active at the same time.

• The ROM read only memory permanently stores programs
and data and data was always present, even when power is
disconnected.

• It is also called as nonvolatile memory.
• EPROM (erasable programmable read only memory) is

also erasable if exposed to high intensity ultraviolet light
for about 20 minutes or less, depending upon the type of
EPROM.

• We have PROM (programmable read only memory)
• RMM (read mostly memory) is also called the flash

memory.
Next Page

• The flash memory is also called as an EEPROM
(electrically erasable programmable ROM), EAROM
(electrically alterable ROM), or a NOVROM
(nonvolatile ROM).

• These memory devices are electrically erasable in the
system, but require more time to erase than a normal
RAM.

• EPROM contains the series of 27XXX contains the
following part numbers : 2704(512 * 8), 2708(1K * 8),
2716(2K * 8), 2732(4K * 8), 2764(8K * 8),
27128(16K * 8) etc..

Next Page

• Each of these parts contains address pins, eight data
connections, one or more chip selection inputs (CE) and an
output enable pin (OE).

• This device contains 11 address inputs and 8 data outputs.
• If both the pin connection CE and OE are at logic 0, data

will appear on the output connection . If both the pins are
not at logic 0, the data output connections remains at their
high impedance or off state.

• To read data from the EPROM Vpp pin must be placed at a
logic 1.

Next Page

Next Page

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15

PIN CONFIGURATION OF 2716 EPROM

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND O3

O4

O5

O6

O7

PD/PGM

A10

CS

Vpp

A9

A8

Vcc

Next Page

A0 –A10

PD/PGM

CS

O0-O7 OUT PUTS

CHIP SELECT

POWER DOWN PROGRAM /

ADDRESSES

PIN NAMES

Vcc

Vpp
GND

CHIP SELECT
POWER DOWN
AND PROGRAM
LOGIC

Y
DECODER

X
DECODER

16,386 BIT
CELL
MATRIX

Y-GATING

OUTPUT
BUFFERS

DATA OUTPUTS
O0 – O7

A0 - A10
ADDRESS
INPUTS

PD / PGM
CS

BLOCK DIAGRAM

• Static RAM memory device retain data for as long as DC
power is applied. Because no special action is required to
retain stored data, these devices are called as static
memory. They are also called volatile memory because
they will not retain data without power.

• The main difference between a ROM and RAM is that a
RAM is written under normal operation, while ROM is
programmed outside the computer and is only normally
read.

• The SRAM stores temporary data and is used when the
size of read/write memory is relatively small.

Next Page

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15

PIN CONFIGURATION OF TMS
4016 SRAM

A7
A6

A5
A4
A3
A2
A1
A0

DQ1
DQ2
DQ3
Vss DQ4

DQ5

DQ6

DQ7

DQ8

S

A10

G

W

A9

A8

VCC

Next Page

A 0 – A 10
_

W

S

DQ 0 _ DQ 8
DATA IN /

DATA OUT

CHIP SELECT

WRITE ENABLE

ADDRESSES

PIN NAMES

G
OUT PUT
ENABLE

Vss GROUND

Vcc + 5 V
SUPPLY

Next Page

• The control inputs of this RAM are slightly different from
those presented earlier. The OE pin is labeled G, the CS
pin S and the WE pin W.

• This 4016 SRAM device has 11 address inputs and 8 data
input/output connections.

Static RAM Interfacing

• The semiconductor RAM are broadly two types – static
RAM and dynamic RAM.

• The semiconductor memories are organised as two
dimensional arrays of memory locations.

• For example 4K * 8 or 4K byte memory contains 4096
locations, where each locations contains 8-bit data and
only one of the 4096 locations can be selected at a time.
Once a location is selected all the bits in it are accessible
using a group of conductors called Data bus.

• For addressing the 4K bytes of memory, 12 address lines
are required.

• In general to address a memory location out of N memory
locations, we will require at least n bits of address, i.e. n
address lines where n = Log2 N.

• Thus if the microprocessor has n address lines, then it is
able to address at the most N locations of memory, where
2n=N. If out of N locations only P memory locations are to
be interfaced, then the least significant p address lines out
of the available n lines can be directly connected from the
microprocessor to the memory chip while the remaining
(n-p) higher order address lines may be used for address
decoding as inputs to the chip selection logic.

• The memory address depends upon the hardware circuit
used for decoding the chip select (CS). The output of
the decoding circuit is connected with the CS pin of the
memory chip.

• The general procedure of static memory interfacing with
8086 is briefly described as follows:

1. Arrange the available memory chip so as to obtain 16-
bit data bus width. The upper 8-bit bank is called as odd
address memory bank and the lower 8-bit bank is called
as even address memory bank.

2. Connect available memory address lines of memory chip
with those of the microprocessor and also connect the
memory RD and WR inputs to the corresponding
processor control signals. Connect the 16-bit data bus of
the memory bank with that of the microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE
and A0 are used for decoding the required chip select
signals for the odd and even memory banks. The CS of
memory is derived from the o/p of the decoding circuit.

• As a good and efficient interfacing practice, the address
map of the system should be continuous as far as possible,
i.e. there should not be no windows in the map and no fold
back space should be allowed.

• A memory location should have a single address
corresponding to it, i.e. absolute decoding should be
preferred and minimum hardware should be used for
decoding.

Dynamic RAM

• Whenever a large capacity memory is required in a
microcomputer system, the memory subsystem is generally
designed using dynamic RAM because there are various
advantages of dynamic RAM.

• E.g. higher packing density, lower cost and less power
consumption. A typical static RAM cell may require six
transistors while the dynamic RAM cell requires only a
transistors along with a capacitor. Hence it is possible to
obtain higher packaging density and hence low cost units
are available.

Next Page

• The basic dynamic RAM cell uses a capacitor to store the
charge as a representation of data. This capacitor is
manufactured as a diode that is reverse-biased so that the
storage capacitance comes into the picture. This storage
capacitance is utilized for storing the charge representation
of data but the reverse-biased diode has leakage current
that tends to discharge the capacitor giving rise to the
possibility of data loss. To avoid this possible data loss, the
data stored in a dynamic RAM cell must be refreshed after
a fixed time interval regularly. The process of refreshing
the data in RAM is called as Refresh cycle.

Next Page

• The refresh activity is similar to reading the data from each
and every cell of memory, independent of the requirement
of microprocessor. During this refresh period all other
operations related to the memory subsystem are suspended.
Hence the refresh activity causes loss of time, resulting in
reduce system performance.

• However keeping in view the advantages of dynamic
RAM, like low power consumption, high packaging
density and low cost, most of the advanced computing
system are designed using dynamic RAM, at the cost of
operating speed.

Next Page

• A dedicated hardware chip called as dynamic RAM
controller is the most important part of the interfacing
circuit.

• The Refresh cycle is different from the memory read
cycle in the following aspects.

1. The memory address is not provided by the CPU address
bus, rather it is generated by a refresh mechanism
counter called as refresh counter.

2. Unlike memory read cycle, more than one memory chip
may be enabled at a time so as to reduce the number of
total memory refresh cycles.

Next Page

3. The data enable control of the selected memory chip is
deactivated, and data is not allowed to appear on the
system data bus during refresh, as more than one
memory units are refreshed simultaneously. This is to
avoid the data from the different chips to appear on the
bus simultaneously.

4. Memory read is either a processor initiated or an external
bus master initiated and carried out by the refresh
mechanism.

Next Page

• Dynamic RAM is available in units of several kilobits to
megabits of memory. This memory is arranged internally
in a two dimensional matrix array so that it will have n
rows and m columns. The row address n and column
address m are important for the refreshing operation.

• For example, a typical 4K bit dynamic RAM chip has an
internally arranged bit array of dimension 64 * 64 , i.e. 64
rows and 64 columns. The row address and column
address will require 6 bits each. These 6 bits for each row
address and column address will be generated by the
refresh counter, during the refresh cycles.

• A complete row of 64 cells is refreshed at a time to
minimizes the refreshing time. Thus the refresh counter
needs to generate only row addresses. The row address are
multiplexed, over lower order address lines.

• The refresh signals act to control the multiplexer, i.e. when
refresh cycle is in process the refresh counter puts the row
address over the address bus for refreshing. Otherwise, the
address bus of the processor is connected to the address
bus of DRAM, during normal processor initiated activities.

• A timer, called refresh timer, derives a pulse for refreshing
action after each refresh interval.

• Refresh interval can be qualitatively defined as the time for
which a dynamic RAM cell can hold data charge level
practically constant, i.e. no data loss takes place.

• Suppose the typical dynamic RAM chip has 64 rows, then
each row should be refreshed after each refresh interval or
in other words, all the 64 rows are to refreshed in a single
refresh interval.

• This refresh interval depends upon the manufacturing
technology of the dynamic RAM cell. It may range
anywhere from 1ms to 3ms.

• Let us consider 2ms as a typical refresh time interval.
Hence, the frequency of the refresh pulses will be
calculated as follows:

• Refresh Time (per row) tr = (2 * 10 -3) / 64.
• Refresh Frequency fr = 64 / (2 * 10 -3) = 32 * 103 Hz.
• The following block diagram explains the refreshing logic

and 8086 interfacing with dynamic RAM.
• Each chip is of 16K * 1-bit dynamic RAM cell array. The

system contains two 16K byte dynamic RAM units. All the
address and data lines are assumed to be available from an
8086 microprocessor system.

• The OE pin controls output data buffer of the memory
chips. The CE pins are active high chip selects of memory
chips. The refresh cycle starts, if the refresh output of the
refresh timer goes high, OE and CE also tend to go high.

• The high CE enables the memory chip for refreshing,
while high OE prevents the data from appearing on the
data bus, as discussed in memory refresh cycle. The 16K *
1-bit dynamic RAM has an internal array of 128*128 cells,
requiring 7 bits for row address. The lower order seven
lines A0-A6 are multiplexed with the refresh counter output
A10-A16.

Ref. Add
Counter

Refresh
Refresh
timer

To transreceivers

A15 A14

CE1 CE2
Address
Deciding logic

7 bit
bus
MUX

A7 – A13

CE1

CE2

A0-A6

OE CE OE CE OE CE OE CE OE CE OE CE OE CE OE CE

16K*1 16K*1 16K*1 16K*
1

16K*1 16K*1 16K*1

16K*116K*116K*116K*116K*116K*116K*116K*1

16K*1

OE CE OE CE CE OE CE OE CE OE CE OE CE CEOE OE

A7 – A13

A6 – A0

A7 – A13

A6 – A0

Ar0
–
Ar6

Dynamic RAM Refreshing Logic

ADDRESS

+12 V CLK

B0

X0/OP2 X1/CLK
Vcc

16K/64K

OUT7 – OUT0
Address O/P

RAS1 – RAS0

CAS

WE
XACKSACK

WR
RD

PCS

Refrq.

AL0 -AL7

AH0 -AH7

External refresh request

Protected Chip Select

Read request
Write request

Bank Select

Write enable

System Acknowledge Transfer Acknowledge

Fig : Dynamic RAM controller

8203

WE

CAS

RAS

A0 – A7

Vcc +5V

Din

Dout

2164

Fig : 1- bit Dynamic RAM

• The pin assignment for 2164 dynamic RAM is as in
above fig.

• The RAS and CAS are row and column address strobes
and are driven by the dynamic RAM controller outputs.
A0 –A7 lines are the row or column address lines, driven
by the OUT0 – OUT7 outputs of the controller. The WE
pin indicates memory write cycles. The DIN and DOUT
pins are data pins for write and read operations
respectively.

• In practical circuits, the refreshing logic is integrated
inside dynamic RAM controller chips like 8203, 8202,
8207 etc.

• Intel’s 8203 is a dynamic RAM controller that support 16K
or 64K dynamic RAM chip. This selection is done using
pin 16K/64K. If it is high, the 8203 is configured to control
16K dynamic RAM, else it controls 64K dynamic RAM.
The address inputs of 8203 controller accepts address lines
A1 to A16 on lines AL0-AL7 and AH0-AH7.

• The A0 lines is used to select the even or odd bank. The
RD and WR signals decode whether the cycle is a memory
read or memory write cycle and are accepted as inputs to
8203 from the microprocessor.

• The WE signal specifies the memory write cycle and is not
output from 8203 that drives the WE input of dynamic
RAM memory chip. The OUT0 – OUT7 set of eight pins is
an 8-bit output bus that carries multiplexed row and
column addresses are derived from the address lines A1-
A16 accepted by the controller on its inputs AL0-AL7 and
AH0-AH7.

• An external crystal may be applied between X0 and X1
pins, otherwise with the OP2 pin at +12V, a clock signal
may be applied at pin CLK.

• The PCS pin accepts the chip select signal derived by an
address decoder. The REFREQ pin is used whenever the
memory refresh cycle is to be initiated by an external
signal.

• The XACK signal indicates that data is available during a
read cycle or it has been written if it is a write cycle. It can
be used as a strobe for data latches or as a ready signal to
the processor.

• The SACK output signal marks the beginning of a memory
access cycle.

• If a memory request is made during a memory refresh
cycle, the SACK signal is delayed till the starring of
memory read or write cycle.

• Following fig shows the 8203 can be used to control a
256K bytes memory subsystem for a maximum mode 8086
microprocessor system.

• This design assumes that data and address busses are
inverted and latched, hence the inverting buffers and
inverting latches are used (8283-inverting buffer and
8287- inverting latch).

XACK

XACK

XACK

OTHER
READY
INPUTS

8284A

RDY

AD0 –
AD15

AD0 – AD15A16 – A19

BHE

8086

S0-S2

8288
BUS
CTRLR

ALE

8267
XCEIVER

8283
LATCH

D0-D15

A0-A19

A0

BHE

WRITE

READ

System
Bus

8288
XCIEVER

8205
DECODER

8267
XCIEVER

DATA
LATCH
CS

8267
XCIEVER

CS
WR

DATA

D0-D15

MEMORY
2164 256K
BYTES

D0 D1

16

16

A1-
A16

A12-
A19

A0

RD

WR
BHE

D
A
T
A

ADR-
AD

RD

WR
PCS

ADDR
IN

XACK SACK

8203

WE

ADDR
OUT

CAS

High
Byte
Write

Fig : Interfacing 2164 Using 8203

• Most of the functions of 8208 and 8203 are similar but
8208 can be used to refresh the dynamic RAM using DMA
approach. The memory system is divided into even and
odd banks of 256K bytes each, as required for an 8086
system.

• The inverted AACK output of 8208 latches the A0 and
BHE signals required for selecting the banks. If the latched
bank select signal and the WE/PCLK output of 8208 both
become low. It indicates a write operation to the respective
bank.

8254

• Compatible with All Intel and Most other Microprocessors
• Handles Inputs from DC to 10 MHz
• 8 MHz 8254
• 10 MHz 8254-2
• Status Read-Back Command
• Six Programmable Counter Modes
• Three Independent 16-Bit Counters
• Binary or BCD Counting
• Single a 5V Supply
• Standard Temperature Range

• The Intel 8254 is a counter/timer device designed to solve
the common timing control problems in microcomputer
system design.

• It provides three independent 16-bit counters, each capable
of handling clock inputs up to 10 MHz.

• All modes are software programmable. The 8254 is a
superset of the 8253.

• The 8254 uses HMOS technology and comes in a 24-pin
plastic or CERDIP package.

Figure 1. Pin Configuration

Figure 2. 8254 Block Diagram

Pin Description

Symbol Pin
No.

Type Name and Function

D7-D0 1 - 8 I/O DATA: Bi-directional three state data bus
lines, connected to system data bus.

CLK 0 9 I CLOCK 0: Clock input of Counter 0.

OUT 0 10 O OUTPUT 0: Output of Counter 0.

GATE 0 11 I GATE 0: Gate input of Counter 0.

GND 12 GROUND: Power supply connection.

VCC 24 POWER: A 5V power supply connection.

WR 23 I
WRITE CONTROL: This input is low during
CPU write operations.

RD 22 I
READ CONTROL: This input is low during
CPU read operations.

CS 21 I
CHIP SELECT: A low on this input enables the
8254 to respond to RD and WR signals. RD and
WR are ignored otherwise.

A1, A0 20 – 9 I ADDRESS: Used to select one of the three
Counters or the Control Word Register for read
or write operations. Normally connected to the
system address bus.
A1 A0 Selects
0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Word Register

CLK 2 18 I CLOCK 2: Clock input of Counter 2.

OUT 2 17 O OUT 2: Output of Counter 2.

GATE 2 16 I GATE 2: Gate input of Counter 2.

CLK 1 15 I CLOCK 1: Clock input of Counter 1.

GATE 1 14 I GATE 1: Gate input of Counter 1.

OUT 1 OUT 1 O OUT 1: Output of Counter 1.

Functional Description

• The 8254 is a programmable interval timer/counter
designed for use with Intel microcomputer systems.

• It is a general purpose, multi-timing element that can be
treated as an array of I/O ports in the system software.

• The 8254 solves one of the most common problems in any
microcomputer system, the generation of accurate time
delays under software control. Instead of setting up timing
loops in software, the programmer configures the 8254 to
match his requirements and programs one of the counters
for the desired delay.

• After the desired delay, the 8254 will interrupt the CPU.
Software overhead is minimal and variable length delays
can easily be accommodated.

• Some of the other counter/timer functions common to
microcomputers which can be implemented with the 8254
are:

• Real time clock
• Event-counter
• Digital one-shot

• Programmable rate generator
• Square wave generator
• Binary rate multiplier
• Complex waveform generator
• Complex motor controller

Block Diagram

• DATA BUS BUFFER: This 3-state, bi-directional, 8-bit
buffer is used to interface the 8254 to the system bus, see
the figure : Block Diagram Showing Data Bus Buffer and
Read/Write Logic Functions.

• READ/WRITE LOGIC : The Read/Write Logic accepts
inputs from the system bus and generates control signals
for the other functional blocks of the 8254. A1 and A0
select one of the three counters or the Control Word
Register to be read from/written into.

• A ``low'' on the RD input tells the 8254 that the CPU is
reading one of the counters.

Figure 3. Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions

• A ``low'' on the WR input tells the 8254 that the CPU is
writing either a Control Word or an initial count. Both RD
and WR are qualified by CS; RD and WR are ignored
unless the 8254 has been selected by holding CS low.

• CONTROL WORD REGISTER :The Control Word
Register (see Figure 4) is selected by the Read/Write Logic
when A1,A0 = 11. If the CPU then does a write operation to
the 8254, the data is stored in the Control Word Register
and is interpreted as a Control Word used to define the
operation of the Counters.

Figure 4. Block Diagram Showing Control Word Register and Counter Functions

• The Control Word Register can only be written to; status
information is available with the Read-Back Command.

• COUNTER 0, COUNTER 1, COUNTER 2 :These three
functional blocks are identical in operation, so only a
single Counter will be described. The internal block
diagram of a single counter is shown in Figure 5.

• The Counters are fully independent. Each Counter may
operate in a different Mode.

• The Control Word Register is shown in the figure; it is not
part of the Counter itself, but its contents determine how
the Counter operates.

• The status register, shown in Figure 5, when latched,
contains the current contents of the Control Word Register
and status of the output and null count flag. (See detailed
explanation of the Read-Back command.)

• The actual counter is labelled CE (for ``Counting
Element''). It is a 16-bit presettable synchronous down
counter. OLM and OLL are two 8-bit latches. OL stands
for ``Output Latch''; the subscripts M and L stand for
``Most significant byte'' and ``Least significant byte'‘
respectively.

Figure 5. Internal Block Diagram of a Counter

• Both are normally referred to as one unit and called just
OL. These latches normally ``follow'‘ the CE, but if a
suitable Counter Latch Command is sent to the 8254, the
latches ``latch'' the present count until read by the CPU and
then return to ``following'' the CE.

• One latch at a time is enabled by the counter's Control
Logic to drive the internal bus. This is how the 16-bit
Counter communicates over the 8-bit internal bus. Note
that the CE itself cannot be read; whenever you read the
count, it is the OL that is being read.

• Similarly, there are two 8-bit registers called CRM and
CRL (for ``Count Register''). Both are normally referred to
as one unit and called just CR.

• When a new count is written to the Counter, the count is
stored in the CR and later transferred to the CE. The
Control Logic allows one register at a time to be loaded
from the internal bus. Both bytes are transferred to the CE
simultaneously.

• CRM and CRL are cleared when the Counter is
programmed. In this way, if the Counter has been
programmed for one byte counts (either most significant
byte only or least significant byte only) the other byte will
be zero.

• Note that the CE cannot be written into, whenever a count
is written, it is written into the CR.

• The Control Logic is also shown in the diagram.
• CLK n, GATE n, and OUT n are all connected to the

outside world through the Control Logic.
• 8254 SYSTEM INTERFACE :The 8254 is a component

of the Intel Microcomputer Systems and interfaces in the
same manner as all other peripherals of the family.

• It is treated by the system's software as an array of
peripheral I/O ports; three are counters and the fourth is a
control register for MODE programming.

• Basically, the select inputs A0,A1 connect to the A0,A1
address bus signals of the CPU. The CS can be derived
directly from the address bus using a linear select method.
Or it can be connected to the output of a decoder, such as
an Intel 8205 for larger systems.

• Programming the 8254 :Counters are programmed by
writing a Control Word and then an initial count.

• The Control Words are written into the Control Word
Register, which is selected when A1,A0 = 11. The Control
Word itself specifies which Counter is being programmed.

Figure 6. 8254 System Interface

• Control Word Format: A1,A0 = 11, CS = 0, RD = 1,
WR = 0.

• By contrast, initial counts are written into the Counters, not
the Control Word Register. The A1,A0 inputs are used to
select the Counter to be written into. The format of the
initial count is determined by the Control Word used.

• Write Operations: The programming procedure for the
8254 is very flexible. Only two conventions need to be
remembered:

1) For each Counter, the Control Word must be written before
the initial count is written.

2) The initial count must follow the count format specified in
the Control Word (least significant byte only, most
significant byte only, or least significant byte and then
most significant byte).

• Since the Control Word Register and the three Counters
have separate addresses (selected by the A1,A0 inputs), and
each Control Word specifies the Counter it applies to
(SC0,SC1 bits), no special instruction sequence is required.

• Any programming sequence that follows the conventions
in Figure 7 is acceptable.

Figure 7. Control Word Format

NOTE: Don't care bits (X) should be 0 to insure compatibility with future Intel products.

• A new initial count may be written to a Counter at any
time without affecting the Counter's programmed Mode in
any way. Counting will be affected as described in the
Mode definitions. The new count must follow the
programmed count format.

• If a Counter is programmed to read/write two-byte counts,
the following precaution applies: A program must not
transfer control between writing the first and second byte
to another routine which also writes into that same
Counter. Otherwise, the Counter will be loaded with an
incorrect count.

Figure 8. A Few Possible Programming Sequences

• Read Operations: It is often desirable to read the value of
a Counter without disturbing the count in progress. This is
easily done in the 8254.

• There are three possible methods for reading the counters:
a simple read operation, the Counter Latch Command, and
the Read-Back Command.

• Each is explained below. The first method is to perform a
simple read operation. To read the Counter, which is
selected with the A1, A0 inputs, the CLK input of the
selected Counter must be inhibited by using either the
GATE input or external logic.

• Otherwise, the count may be in the process of changing
when it is read, giving an undefined result.

• COUNTER LATCH COMMAND: The second method
uses the ``Counter Latch Command''.

• Like a Control Word, this command is written to the
Control Word Register, which is selected when A1,A0 =
11. Also like a Control Word, the SC0, SC1 bits select one
of the three Counters, but two other bits, D5 and D4,
distinguish this command from a Control Word.

• The selected Counter's output latch (OL) latches the count
at the time the Counter Latch Command is received. This
count is held in the latch until it is read by the CPU (or
until the Counter is reprogrammed).

Figure 9. Counter Latching Command Format

• The count is then unlatched automatically and the OL
returns to ``following'' the counting element (CE).

• This allows reading the contents of the Counters ``on the
fly'' without affecting counting in progress.

• Multiple Counter Latch Commands may be used to latch
more than one Counter. Each latched Counter's OL holds
its count until it is read.

• Counter Latch Commands do not affect the programmed
Mode of the Counter in any way.

• If a Counter is latched and then, some time later, latched
again before the count is read, the second Counter Latch
Command is ignored. The count read will be the count at
the time the first Counter Latch Command was issued.

• With either method, the count must be read according to
the programmed format; specifically, if the Counter is
programmed for two byte counts, two bytes must be read.
The two bytes do not have to be read one right after the
other, read or write or programming operations of other
Counters may be inserted between them.

• Another feature of the 8254 is that reads and writes of the
same Counter may be interleaved.

• Example: If the Counter is programmed for two byte
counts, the following sequence is valid.

1) Read least significant byte.
2) Write new least significant byte.
3) Read most significant byte.
4) Write new most significant byte.

• If a Counter is programmed to read/write two-byte counts,
the following precaution applies: A program must not
transfer control between reading the first and second byte
to another routine which also reads from that same
Counter. Otherwise, an incorrect count will be read.

• READ-BACK COMMAND: The third method uses the
Read-Back Command. This command allows the user to
check the count value, programmed Mode, and current
states of the OUT pin and Null Count flag of the selected
counter (s).

• The command is written into the Control Word Register
and has the format shown in Figure 10. The command
applies to the counters selected by setting their
corresponding bits D3, D2, D1 = 1.

• The read-back command may be used to latch multiple
counter output latches (OL) by setting the COUNT bit
D5 = 0 and selecting the desired counter (s). This single
command is functionally equivalent to several counter
latch commands, one for each counter latched.

Figure 10. Read-Back Command Format

• Each counter's latched count is held until it is read (or the
counter is reprogrammed).

• The counter is automatically unlatched when read, but
other counters remain latched until they are read. If
multiple count read-back commands are issued to the same
counter without reading the count, all but the first are
ignored; i.e., the count which will be read is the count at
the time the first read-back command was issued.

• The read-back command may also be used to latch status
information of selected counter (s) by setting STATUS bit
D4 = 0. Status must be latched to be read; status of a
counter is accessed by a read from that counter.

• The counter status format is shown in Figure 11.
• Bits D5 through D0 contain the counter's programmed

Mode exactly as written in the last Mode Control Word.
OUTPUT bit D7 contains the current state of the OUT pin.

• This allows the user to monitor the counter's output via
software, possibly eliminating some hardware from a
system. NULL COUNT bit D6 indicates when the last
count written to the counter register (CR) has been loaded
into the counting element (CE).

• The exact time this happens depends on the Mode of the
counter and is described in the Mode Definitions, but until
the count is loaded into the counting element (CE), it can't
be read from the counter.

Figure 11. Status Byte

• If the count is latched or read before this time, the count
value will not reflect the new count just written. The
operation of Null Count is shown in Figure 12.

• If multiple status latch operations of the counter (s) are
performed without reading the status, all but the first are
ignored; i.e., the status that will be read is the status of the
counter at the time the first status read-back command was
issued.

• Both count and status of the selected counter (s) may be
latched simultaneously by setting both COUNT and
STATUS bits D5,D4 = 0. This is functionally the same as
issuing two separate read-back commands at once, and the
above discussions apply here also.

Figure 12. Null Count Operation

• Specifically, if multiple count and/or status read-back
commands are issued to the same counter (s) without any
intervening reads, all but the first are ignored. This is
illustrated in Figure 13.

• If both count and status of a counter are latched, the first
read operation of that counter will return latched status,
regardless of which was latched first. The next one or two
reads (depending on whether the counter is programmed
for one or two type counts) return latched count.
Subsequent reads return unlatched count.

Figure 13. Read-Back Command Example

Figure 14. Read/Write Operations Summary

• Mode Definitions :The following are defined for use in
describing the operation of the 8254.

• CLK Pulse: A rising edge, then a falling edge, in that
order, of a Counter's CLK input.

• Trigger: A rising edge of a Counter's GATE input.
• Counter loading: The transfer of a count from the CR to

the CE (refer to the ``Functional Description'').
• MODE 0: INTERRUPT ON TERMINAL COUNT :

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially low, and will
remain low until the Counter reaches zero.

• OUT then goes high and remains high until a new count or
a new Mode 0 Control Word is written into the Counter.

• GATE = 1 enables counting; GATE = 0 disables counting.
GATE has no effect on OUT.

• After the Control Word and initial count are written to a
Counter, the initial count will be loaded on the next CLK
pulse. This CLK pulse does not decrement the count, so for
an initial count of N, OUT does not go high until N a 1
CLK pulses after the initial count is written.

• If a new count is written to the Counter, it will be loaded
on the next CLK pulse and counting will continue from the
new count. If a two-byte count is written, the following
happens:

1) Writing the first byte disables counting. OUT is set low
immediately (no clock pulse required).

2) Writing the second byte allows the new count to be loaded
on the next CLK pulse.

• This allows the counting sequence to be synchronized by
software. Again, OUT does not go high until Na1 CLK
pulses after the new count of N is written.

• If an initial count is written while GATE e 0, it will still be
loaded on the next CLK pulse. When GATE goes high,
OUT will go high N CLK pulses later; no CLK pulse is
needed to load the Counter as this has already been done.

Figure 15. Mode 0

Note:
1. Counters are programmed for binary (not BCD) counting
and for reading/writing least significant byte (LSB) only.
2. The counter is always selected (CS always low).
3. CW stands for ``Control Word''; CW = 10 means a control
word of 10 HEX is written to the counter.
4. LSB stands for ``Least Significant Byte'' of count.
5. Numbers below diagrams are count values. The lower
number is the least significant byte. The upper number is the
most significant byte. Since the counter is programmed to
read/write LSB only, the most significant byte cannot be
read. N stands for an undefined count. Vertical lines show
transitions between count values.

• MODE 1: HARDWARE RETRIGGERABLE ONE-
SHOT: OUT will be initially high.

• OUT will go low on the CLK pulse following a trigger to
begin the one-shot pulse, and will remain low until the
Counter reaches zero.

• OUT will then go high and remain high until the CLK
pulse after the next trigger.

• After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the Counter
and setting OUT low on the next CLK pulse, thus starting
the one-shot pulse. An initial count of N will result in a
one-shot pulse N CLK cycles in duration.

• The one-shot is retriggerable, hence OUT will remain low
for N CLK pulses after any trigger. The one-shot pulse can
be repeated without rewriting the same count into the
counter. GATE has no effect on OUT.

• If a new count is written to the Counter during a oneshot
pulse, the current one-shot is not affected unless the
counter is retriggered. In that case, the Counter is loaded
with the new count and the oneshot pulse continues until
the new count expires.

Figure 16. Mode 1

• MODE 2: RATE GENERATOR: This Mode functions
like a divide-by-N counter. It is typically used to generate a
Real Time Clock interrupt.

• OUT will initially be high. When the initial count has
decremented to 1, OUT goes low for one CLK pulse. OUT
then goes high again, the Counter reloads the initial count
and the process is repeated.

• Mode 2 is periodic, the same sequence is repeated
indefinitely. For an initial count of N, the sequence repeats
every N CLK cycles.

• GATE = 1 enables counting; GATE = 0 disables counting.
If GATE goes low during an output pulse, OUT is set high
immediately.

• A trigger reloads the Counter with the initial count on the
next CLK pulse, OUT goes low N CLK pulses after the
trigger. Thus the GATE input can be used to synchronize
the Counter.

• After writing a Control Word and initial count, the Counter
will be loaded on the next CLK pulse. OUT goes low N
CLK Pulses after the initial count is written.

• This allows the Counter to be synchronized by software
also. Writing a new count while counting does not affect
the current counting sequence.

• If a trigger is received after writing a new count but before
the end of the current period, the Counter will be loaded
with the new count on the next CLK pulse and counting
will continue from the new count.

• Otherwise, the new count will be loaded at the end of the
current counting cycle. In mode 2, a COUNT of 1 is
illegal.

• MODE 3: SQUARE WAVE MODE :Mode 3 is typically
used for Baud rate generation. Mode 3 is similar to Mode 2
except for the duty cycle of OUT. OUT will initially be
high.

Figure 17. Mode 2

• When half the initial count has expired, OUT goes low for
the remainder of the count. Mode 3 is periodic; the
sequence above is repeated indefinitely.

• An initial count of N results in a square wave with a
period of N CLK cycles. GATE = 1 enables counting;
GATE = 0 disables counting. If GATE goes low while
OUT is low, OUT is set high immediately; no CLK pulse
is required.

• A trigger reloads the Counter with the initial count on the
next CLK pulse. Thus the GATE input can be used to
synchronize the Counter.

• After writing a Control Word and initial count, the Counter
will be loaded on the next CLK pulse. This allows the
Counter to be synchronized by software also.

• Writing a new count while counting does not affect the
current counting sequence. If a trigger is received after
writing a new count but before the end of the current half-
cycle of the square wave, the Counter will be loaded with
the new count on the next CLK pulse and counting will
continue from the new count. Otherwise, the new count
will be loaded at the end of the current half-cycle.

• Mode 3:Even counts: OUT is initially high. The initial
count is loaded on one CLK pulse and then is decremented
by two on succeeding CLK pulses.

• When the count expires OUT changes value and the
Counter is reloaded with the initial count. The above
process is repeated indefinitely.

• Odd counts: OUT is initially high. The initial count minus
one (an even number) is loaded on one CLK pulse and
then is decremented by two on succeeding CLK pulses.

Figure 18. Mode 3

• One CLK pulse after the count expires, OUT goes low and
the Counter is reloaded with the initial count minus one.

• Succeeding CLK pulses decrement the count by two.
• When the count expires, OUT goes high again and the

Counter is reloaded with the initial count minus one. The
above process is repeated indefinitely.

• So for odd counts, OUT will be high for (N - 1)/2 counts
and low for (N - 1)/2 counts.

• MODE 4: SOFTWARE TRIGGERED STROBE :
• OUT will be initially high. When the initial count expires,

OUT will go low for one CLK pulse and then go high
again. The counting sequence is ``triggered'‘ by writing the
initial count.

• GATE = 1 enables counting; GATE = 0 disables counting.
GATE has no effect on OUT. After writing a Control
Word and initial count, the Counter will be loaded on the
next CLK pulse.

• This CLK pulse does not decrement the count, so for an
initial count of N, OUT does not strobe low until N + 1
CLK pulses after the initial count is written.

• If a new count is written during counting, it will be loaded
on the next CLK pulse and counting will continue from
the new count. If a two-byte count is written, the
following happens:

1) Writing the first byte has no effect on counting.
2) Writing the second byte allows the new count to be loaded

on the next CLK pulse.
• This allows the sequence to be ``retriggered'' by software.

OUT strobes low N a 1 CLK pulses after the new count of
N is written.

Figure 19. Mode 4

• MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE) :OUT will initially be high.
Counting is triggered by a rising edge of GATE. When the
initial count has expired, OUT will go low for one CLK
pulse and then go high again.

• After writing the Control Word and initial count, the
counter will not be loaded until the CLK pulse after a
trigger. This CLK pulse does not decrement the count, so
for an initial count of N, OUT does not strobe low until
N = 1 CLK pulses after a trigger.

• A trigger results in the Counter being loaded with the
initial count on the next CLK pulse. The counting
sequence is retriggerable. OUT will not strobe low for N a
1 CLK pulses after any trigger. GATE has no effect on
OUT.

• If a new count is written during counting, the current
counting sequence will not be affected. If a trigger occurs
after the new count is written but before the current count
expires, the Counter will be loaded with the new count on
the next CLK pulse and counting will continue from there.

Figure 20. Mode 5

• Operation Common to All Modes:
• PROGRAMMING: When a Control Word is written to a

Counter, all Control Logic is immediately reset and OUT
goes to a known initial state; no CLK pulses are required
for this.

• GATE: The GATE input is always sampled on the rising
edge of CLK. In Modes 0, 2, 3, and 4 the GATE input is
level sensitive, and the logic level is sampled on the rising
edge of CLK. In Modes 1, 2, 3, and 5 the GATE input is
rising-edge sensitive.

• In these Modes, a rising edge of GATE (trigger) sets an
edge-sensitive flip-flop in the Counter. This flip-flop is
then sampled on the next rising edge of CLK; the flip-flop
is reset immediately after it is sampled. In this way, a
trigger will be detected no matter when it occurs-a high
logic level does not have to be maintained until the next
rising edge of CLK.

• Note that in Modes 2 and 3, the GATE input is both edge-
and level-sensitive. In Modes 2 and 3, if a CLK source
other than the system clock is used, GATE should be
pulsed immediately following WR of a new count value.

Figure 21. Gate Pin Operations Summary

• COUNTER: New counts are loaded and Counters are
decremented on the falling edge of CLK.

• The largest possible initial count is 0, this is equivalent to
2

16 for binary counting and 10
4 for BCD counting. The

Counter does not stop when it reaches zero.
• In Modes 0, 1, 4, and 5 the Counter ``wraps around'' to the

highest count, either FFFF hex for binary counting or 9999
for BCD counting, and continues counting.

• Modes 2 and 3 are periodic; the Counter reloads itself with
the initial count and continues counting from there.

Figure 22. Minimum and Maximum Initial Counts

NOTE: 0 is equivalent to 216 for binary counting and 104 for BCD counting.

8259A

• If we are working with an 8086, we have a problem here
because the 8086 has only two interrupt inputs, NMI and
INTR.

• If we save NMI for a power failure interrupt, this leaves
only one interrupt for all the other applications. For
applications where we have interrupts from multiple
source, we use an external device called a priority
interrupt controller (PIC) to the interrupt signals into a
single interrupt input on the processor.

Architecture and Signal Descriptions of
8259A

• The architectural block diagram of 8259A is shown in fig1.
The functional explication of each block is given in the
following text in brief.

• Interrupt Request Register (RR): The interrupts at IRQ
input lines are handled by Interrupt Request internally. IRR
stores all the interrupt request in it in order to serve them
one by one on the priority basis.

• In-Service Register (ISR): This stores all the interrupt
requests those are being served, i.e. ISR keeps a track of
the requests being served.

Fig:1 8259A Block Diagram

Interrupt Mask Register
IMR

Control Logic

IN Service
Register
ISR

Priority
Resolver

Interrupt
Request
Register
IRR

Data Bus
Buffer

Read/
Write
Logic

Cascade
Buffer/
Comparator

D0-D7

RD
WR

A0

CS

CAS0

CAS1
CAS2

SP / EN

INTA INT

Internal Bus

IR0

IR1

IR7

• Priority Resolver : This unit determines the priorities of
the interrupt requests appearing simultaneously. The
highest priority is selected and stored into the
corresponding bit of ISR during INTA pulse. The IR0 has
the highest priority while the IR7 has the lowest one,
normally in fixed priority mode. The priorities however
may be altered by programming the 8259A in rotating
priority mode.

• Interrupt Mask Register (IMR) : This register stores the
bits required to mask the interrupt inputs. IMR operates on
IRR at the direction of the Priority Resolver.

• Interrupt Control Logic: This block manages the
interrupt and interrupt acknowledge signals to be sent to
the CPU for serving one of the eight interrupt requests.
This also accepts the interrupt acknowledge (INTA) signal
from CPU that causes the 8259A to release vector address
on to the data bus.

• Data Bus Buffer : This tristate bidirectional buffer
interfaces internal 8259A bus to the microprocessor system
data bus. Control words, status and vector information pass
through data buffer during read or write operations.

• Read/Write Control Logic: This circuit accepts and
decodes commands from the CPU. This block also allows
the status of the 8259A to be transferred on to the data bus.

• Cascade Buffer/Comparator: This block stores and
compares the ID’s all the 8259A used in system. The three
I/O pins CASO-2 are outputs when the 8259A is used as a
master. The same pins act as inputs when the 8259A is in
slave mode. The 8259A in master mode sends the ID of the
interrupting slave device on these lines. The slave thus
selected, will send its preprogrammed vector address on
the data bus during the next INTA pulse.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21

18
19
20

15

16
17

GND CAS2

SP / EN
INT
IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

INTA
A0

Vcc

CAS1

CAS0

D0

D1

D2

D3

D4

D5

D6

D7

RD
WR
CS

Fig : 8259 Pin Diagram

8259A

• CS: This is an active-low chip select signal for enabling
RD and WR operations of 8259A. INTA function is
independent of CS.

• WR : This pin is an active-low write enable input to
8259A. This enables it to accept command words from
CPU.

• RD : This is an active-low read enable input to 8259A. A
low on this line enables 8259A to release status onto the
data bus of CPU.

• D0-D7 : These pins from a bidirectional data bus that
carries 8-bit data either to control word or from status word
registers. This also carries interrupt vector information.

• CAS0 – CAS2 Cascade Lines : A signal 8259A provides
eight vectored interrupts. If more interrupts are required,
the 8259A is used in cascade mode. In cascade mode, a
master 8259A along with eight slaves 8259A can provide
upto 64 vectored interrupt lines. These three lines act as
select lines for addressing the slave 8259A.

• PS/EN : This pin is a dual purpose pin. When the chip is
used in buffered mode, it can be used as buffered enable to
control buffer transreceivers. If this is not used in buffered
mode then the pin is used as input to designate whether the
chip is used as a master (SP =1) or slave (EN = 0).

• INT : This pin goes high whenever a valid interrupt
request is asserted. This is used to interrupt the CPU and is
connected to the interrupt input of CPU.

• IR0 – IR7 (Interrupt requests) :These pins act as inputs to
accept interrupt request to the CPU. In edge triggered
mode, an interrupt service is requested by raising an IR pin
from a low to a high state and holding it high until it is
acknowledged, and just by latching it to high level, if used
in level triggered mode.

• INTA (Interrupt acknowledge): This pin is an input
used to strobe-in 8259A interrupt vector data on to the data
bus. In conjunction with CS, WR and RD pins, this selects
the different operations like, writing command words,
reading status word, etc.

• The device 8259A can be interfaced with any CPU using
either polling or interrupt. In polling, the CPU keeps on
checking each peripheral device in sequence to ascertain if
it requires any service from the CPU. If any such service
request is noticed, the CPU serves the request and then
goes on to the next device in sequence.

• After all the peripheral device are scanned as above the
CPU again starts from first device.

• This type of system operation results in the reduction of
processing speed because most of the CPU time is
consumed in polling the peripheral devices.

• In the interrupt driven method, the CPU performs the main
processing task till it is interrupted by a service requesting
peripheral device.

• The net processing speed of these type of systems is high
because the CPU serves the peripheral only if it receives
the interrupt request.

• If more than one interrupt requests are received at a time,
all the requesting peripherals are served one by one on
priority basis.

• This method of interfacing may require additional
hardware if number of peripherals to be interfaced is more
than the interrupt pins available with the CPU.

Interrupt Sequence in an 8086 system

• The Interrupt sequence in an 8086-8259A system is
described as follows:

1. One or more IR lines are raised high that set
corresponding IRR bits.

2. 8259A resolves priority and sends an INT signal to CPU.
3. The CPU acknowledge with INTA pulse.
4. Upon receiving an INTA signal from the CPU, the

highest priority ISR bit is set and the corresponding IRR
bit is reset. The 8259A does not drive data during this
period.

5. The 8086 will initiate a second INTA pulse. During this
period 8259A releases an 8-bit pointer on to a data bus
from where it is read by the CPU.

6. This completes the interrupt cycle. The ISR bit is reset at
the end of the second INTA pulse if automatic end of
interrupt (AEOI) mode is programmed. Otherwise ISR
bit remains set until an appropriate EOI command is
issued at the end of interrupt subroutine.

Command Words of 8259A

• The command words of 8259A are classified in two
groups

1. Initialization command words (ICW) and
2. Operation command words (OCW).
• Initialization Command Words (ICW): Before it starts

functioning, the 8259A must be initialized by writing
two to four command words into the respective
command word registers. These are called as initialized
command words.

• If A0 = 0 and D4 = 1, the control word is recognized as
ICW1. It contains the control bits for edge/level triggered
mode, single/cascade mode, call address interval and
whether ICW4 is required or not.

• If A0=1, the control word is recognized as ICW2. The
ICW2 stores details regarding interrupt vector addresses.
The initialisation sequence of 8259A is described in form
of a flow chart in fig 3 below.

• The bit functions of the ICW1 and ICW2 are self
explanatory as shown in fig below.

Fig 3: Initialisation Sequence of 8259A

ICW1

ICW2

A : IN CASCADE MODE ?A

ICW3

B B : IS ICW4 NEEDED ?

ICW4

Ready to Accept
Interrupt Request

YES (IC4 = 1)

YES (SINGLE =0)

NO (SINGLE =1)

NO (IC4 =0)

D0D1D2D3D4D5D6D7A0

D0D1D2D3D4D5D6D7A0

0 A7 A6 A5 1 LTIM ADI SNGL IC4

1 = ICW4 Needed
0 = No ICW4 Needed

1 – Single
0 - Cascaded

Call Address Interval
1 – Interval of 4 bytes
0 – Interval of 8 bytes.

1 – Level Triggered
0 – Edge Triggered

A7-A5 of Interrupt
vector address MCs
80/85 mode only

ICW1

1 T7 T6 T5 T4 T3 A10 A9 A8

Fig 4 : Instruction Command Words ICW1 and ICW2

• T7 – T3 are A3 – A0 of interrupt address
• A10 – A9, A8 – Selected according to interrupt request level.

They are not the address lines of Microprocessor
• A0 =1 selects ICW2

ICW2

• Once ICW1 is loaded, the following initialization
procedure is carried out internally.

a. The edge sense circuit is reset, i.e. by default 8259A
interrupts are edge sensitive.

b. IMR is cleared.
c. IR7 input is assigned the lowest priority.
d. Slave mode address is set to 7.
e. Special mask mode is cleared and status read is set to

IRR.
f. If IC4 = 0, all the functions of ICW4 are set to zero.

Master/Slave bit in ICW4 is used in the buffered mode
only.

• In an 8085 based system A15-A8 of the interrupt vector
address are the respective bits of ICW2.

• In 8086 based system A15-A11 of the interrupt vector
address are inserted in place of T7 – T3 respectively and the
remaining three bits A8, A9, A10 are selected depending
upon the interrupt level, i.e. from 000 to 111 for IR0 to IR7.

• ICW1 and ICW2 are compulsory command words in
initialization sequence of 8259A as is evident from fig,
while ICW3 and ICW4 are optional. The ICW3 is read only
when there are more than one 8259A in the system,
cascading is used (SNGL=0).

• The SNGL bit in ICW1 indicates whether the 8259A in the
cascade mode or not. The ICW3 loads an 8-bit slave
register. It detailed functions are as follows.

• In master mode [SP = 1 or in buffer mode M/S = 1 in
ICW4], the 8-bit slave register will be set bit-wise to 1 for
each slave in the system as in fig 5.

• The requesting slave will then release the second byte of a
CALL sequence. In slave mode [SP=0 or if BUF =1 and
M/S = 0 in ICW4] bits D2 to D0 identify the slave, i.e. 000
to 111 for slave 1 to slave 8. The slave compares the
cascade inputs with these bits and if they are equal, the
second byte of the CALL sequence is released by it on the
data bus.

D0D1D2D3D4D5D6D7A0

1 S7 S6 S5 S4 S3 S2 S1 S0

D0D1D2D3D4D5D6D7A0

1 0 0 0 0 0 ID2 ID1 ID0

Master mode ICW3

Sn = 1-IRn Input has a slave
= 0 – IRn Input does not have a slave

Slave mode ICW3

D2D1D0 – 000 to 111 for IR0 to IR7 or slave 1 to slave 8

Fig : ICW3 in Master and Slave Mode, ICW4 Bit Functions

D0D1D2D3D4D5D6D7A0

1 0 0 0 SFNM BUF M/S AEOI µPM

ICW4

• ICW4: The use of this command word depends on the IC4
bit of ICW1. If IC4=1, IC4 is used, otherwise it is neglected.
The bit functions of ICW4 are described as follow:

• SFNM: If BUF = 1, the buffered mode is selected. In the
buffered mode, SP/EN acts as enable output and the
master/slave is determined using the M/S bit of ICW4.

• M/S: If M/S = 1, 8259A is a master. If M/S =0, 8259A is
slave. If BUF = 0, M/S is to be neglected.

• AEOI: If AEOI = 1, the automatic end of interrupt mode is
selected.

• µPM : If the µPM bit is 0, the Mcs-85 system operation is
selected and if µPM=1, 8086/88 operation is selected.

• Operation Command Words: Once 8259A is initialized
using the previously discussed command words for
initialisation, it is ready for its normal function, i.e. for
accepting the interrupts but 8259A has its own way of
handling the received interrupts called as modes of
operation. These modes of operations can be selected by
programming, i.e. writing three internal registers called as
operation command words.

• In the three operation command words OCW1, OCW2 and
OCW3 every bit corresponds to some operational feature of
the mode selected, except for a few bits those are either 1
or 0. The three operation command words are shown in fig
with the bit selection details.

• OCW1 is used to mask the masked and if it is 0 the request
is enabled. In OCW2 the three bits, R, SL and EOI control
the end of interrupt, the rotate mode and their
combinations as shown in fig below.

• The three bits L2, L1 and L0 in OCW2 determine the
interrupt level to be selected for operation, if SL bit is
active i.e. 1.

• The details of OCW2 are shown in fig.
• In operation command word 3 (OCW3), if the ESMM bit,

i.e. enable special mask mode bit is set to 1, the SMM bit
is neglected. If the SMM bit, i.e. special mask mode. When
ESMM bit is 0 the SMM bit is neglected. If the SMM bit.
i.e. special mask mode bit is 1, the 8259A will enter
special mask mode provided ESMM=1.

• If ESMM=1 and SMM=0, the 8259A will return to the
normal mask mode. The details of bits of OCW3 are given
in fig along with their bit definitions.

D0D1D2D3D4D5D6D7

M7 M6 M5 M4 M3 M2 M1 M0

1 – Mask Set
0 – Mask Reset

A0

1

Fig (a) : OCW1

D0D1D2D3D4D5D6D7

0 ESMM SMM 0 1 P RR RIS

A0

0

Fig (b) : OCW3

0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

No Action1 – Poll
Command
0 – No Poll
Command

Read IRR on
next RD pulse

Read IRR on
next RD pulse

No Action
Reset Special
Mask
Set Special
Mask

Fig : Operation Command Words

D0D1D2D3D4D5D6D7

R SL EOI 0 0 L2 L1 L0

A0

1

0 0 1
0 1 1

11
1

0
0 0

000
1 1 1
1 1 0

00 1

0 1 2 3 4 5 6 7
0
0
0 0

0
0 0 1 1 1 1

1
11

11
1 1 0

000
0

0

NON-SPECIFIC EOI COMMAND
SPECIFIC EOI COMMAND
ROTATE ON NON-SPECIFIC EOI MODE (SET)
ROTATE IN AUTOMATIC EOI MODE (SET)
ROTATE IN AUTOMATIC EOI (CLEAR)
ROTATE ON SPECIFIC EOI COMMAND
SET PRIORITY COMMAND*

NO OPERATION

Fig : Operation Command Word

Fig (c) :OCW2

END OF
INTERRUPT

AUTOMATIC
ROTATION

SPECIFIC
ROTATION

* - In this Mode L0 – L2 are used

• The different modes of operation of 8259A can be
programmed by setting or resting the appropriate bits of
the ICW or OCW as discussed previously. The different
modes of operation of 8259A are explained in the
following.

• Fully Nested Mode : This is the default mode of operation
of 8259A. IR0 has the highest priority and IR7 has the
lowest one. When interrupt request are noticed, the highest
priority request amongst them is determined and the vector
is placed on the data bus. The corresponding bit of ISR is
set and remains set till the microprocessor issues an EOI
command just before returning from the service routine or
the AEOI bit is set.

Operating Modes of 8259

• If the ISR (in service) bit is set, all the same or lower
priority interrupts are inhibited but higher levels will
generate an interrupt, that will be acknowledge only if the
microprocessor interrupt enable flag IF is set. The
priorities can afterwards be changed by programming the
rotating priority modes.

• End of Interrupt (EOI) : The ISR bit can be reset either
with AEOI bit of ICW1 or by EOI command, issued before
returning from the interrupt service routine. There are two
types of EOI commands specific and non-specific. When
8259A is operated in the modes that preserve fully nested
structure, it can determine which ISR bit is to be reset on
EOI.

• When non-specific EOI command is issued to 8259A it
will be automatically reset the highest ISR bit out of those
already set.

• When a mode that may disturb the fully nested structure is
used, the 8259A is no longer able to determine the last
level acknowledged. In this case a specific EOI command
is issued to reset a particular ISR bit. An ISR bit that is
masked by the corresponding IMR bit, will not be cleared
by non-specific EOI of 8259A, if it is in special mask
mode.

• Automatic Rotation : This is used in the applications
where all the interrupting devices are of equal priority.

• In this mode, an interrupt request IR level receives priority
after it is served while the next device to be served gets the
highest priority in sequence. Once all the device are served
like this, the first device again receives highest priority.

• Automatic EOI Mode : Till AEOI=1 in ICW4, the 8259A
operates in AEOI mode. In this mode, the 8259A performs
a non-specific EOI operation at the trailing edge of the last
INTA pulse automatically. This mode should be used only
when a nested multilevel interrupt structure is not required
with a single 8259A.

• Specific Rotation : In this mode a bottom priority level
can be selected, using L2, L1 and L0 in OCW2 and R=1,
SL=1, EOI=0.

• The selected bottom priority fixes other priorities. If IR5 is
selected as a bottom priority, then IR5 will have least
priority and IR4 will have a next higher priority. Thus IR6
will have the highest priority.

• These priorities can be changed during an EOI command
by programming the rotate on specific EOI command in
OCW2.

• Specific Mask Mode: In specific mask mode, when a
mask bit is set in OCW1, it inhibits further interrupts at that
level and enables interrupt from other levels, which are not
masked.

• Edge and Level Triggered Mode : This mode decides
whether the interrupt should be edge triggered or level
triggered. If bit LTIM of ICW1 =0 they are edge triggered,
otherwise the interrupts are level triggered.

• Reading 8259 Status : The status of the internal registers
of 8259A can be read using this mode. The OCW3 is used
to read IRR and ISR while OCW1 is used to read IMR.
Reading is possible only in no polled mode.

• Poll Command : In polled mode of operation, the INT
output of 8259A is neglected, though it functions normally,
by not connecting INT output or by masking INT input of
the microprocessor. The poll mode is entered by setting
P=1 in OCW3.

• The 8259A is polled by using software execution by
microprocessor instead of the requests on INT input. The
8259A treats the next RD pulse to the 8259A as an
interrupt acknowledge. An appropriate ISR bit is set, if
there is a request. The priority level is read and a data word
is placed on to data bus, after RD is activated. A poll
command may give more than 64 priority levels.

D0D1D2D3D4D5D6D7

1 x x x x w2 w1 w0

If = 1, there is an interrupt
Binary code of
highest priority
level

Fig : Data Word of 8259

• Special Fully Nested Mode : This mode is used in more
complicated system, where cascading is used and the
priority has to be programmed in the master using ICW4.
this is somewhat similar to the normal nested mode.

• In this mode, when an interrupt request from a certain
slave is in service, this slave can further send request to the
master, if the requesting device connected to the slave has
higher priority than the one being currently served. In this
mode, the master interrupt the CPU only when the
interrupting device has a higher or the same priority than
the one current being served. In normal mode, other
requests than the one being served are masked out.

• When entering the interrupt service routine the software
has to check whether this is the only request from the
slave. This is done by sending a non-specific EOI can be
sent to the master, otherwise no EOI should be sent. This
mode is important, since in the absence of this mode, the
slave would interrupt the master only once and hence the
priorities of the slave inputs would have been disturbed.

• Buffered Mode: When the 83259A is used in the systems
where bus driving buffers are used on data buses. The
problem of enabling the buffers exists. The 8259A sends
buffer enable signal on SP/ EN pin, whenever data is
placed on the bus.

• Cascade Mode : The 8259A can be connected in a system
containing one master and eight slaves (maximum) to
handle upto 64 priority levels. The master controls the
slaves using CAS0-CAS2 which act as chip select inputs
(encoded) for slaves.

• In this mode, the slave INT outputs are connected with
master IR inputs. When a slave request line is activated
and acknowledged, the master will enable the slave to
release the vector address during second pulse of INTA
sequence.

• The cascade lines are normally low and contain slave
address codes from the trailing edge of the first INTA
pulse to the trailing edge of the second INTA pulse. Each
8259A in the system must be separately initialized and
programmed to work in different modes. The EOI
command must be issued twice, one for master and the
other for the slave.

• A separate address decoder is used to activate the chip
select line of each 8259A.

• Following Fig shows the details of the circuit connections
of 8259A in cascade scheme.

Vcc

Fig : 8259A in Cascade Mode

Master Slave 0 Slave 7
M0M1M2M3M4M5M6M7

SP/EN
CS A0 D0-D7 INTA

INT

CS A0 D0-D7 INTA
SP/EN

INT
IR0IR7

INT

IR0IR7

CS

A0

D0-D7

INTA
CAS0-CAS2

DATA BUS

CONTROL BUS

ADDRESS BUS

A1A1
A1

8279

• While studying 8255, we have explained the use of 8255 in
interfacing keyboards and displays with 8086. The
disadvantages of this method of interfacing keyboard and
display with 8086 is that the processor has to refresh the
display and check the status of the keyboard periodically
using polling technique. Thus a considerable amount of
CPU time is wasted, reducing the system operating speed.

• Intel’s 8279 is a general purpose keyboard display
controller that simultaneously drives the display of a
system and interfaces a keyboard with the CPU, leaving it
free for its routine task.

• The keyboard display controller chip 8279 provides:
a) a set of four scan lines and eight return lines for

interfacing keyboards
b) A set of eight output lines for interfacing display.
• Fig shows the functional block diagram of 8279

followed by its brief description.
• I/O Control and Data Buffers : The I/O control section

controls the flow of data to/from the 8279. The data
buffers interface the external bus of the system with
internal bus of 8279.

Architecture and Signal Descriptions of
8279

• The I/O section is enabled only if CS is low. The pins A0,
RD and WR select the command, status or data read/write
operations carried out by the CPU with 8279.

• Control and Timing Register and Timing Control :
These registers store the keyboard and display modes and
other operating conditions programmed by CPU. The
registers are written with A0=1 and WR=0. The Timing
and control unit controls the basic timings for the operation
of the circuit. Scan counter divide down the operating
frequency of 8279 to derive scan keyboard and scan
display frequencies.

• Scan Counter : The scan counter has two modes to scan
the key matrix and refresh the display. In the encoded
mode, the counter provides binary count that is to be
externally decoded to provide the scan lines for keyboard
and display (Four externally decoded scan lines may drive
upto 16 displays). In the decode scan mode, the counter
internally decodes the least significant 2 bits and provides
a decoded 1 out of 4 scan on SL0-SL3(Four internally
decoded scan lines may drive upto 4 displays). The
keyboard and display both are in the same mode at a time.

• Return Buffers and Keyboard Debounce and Control:
This section for a key closure row wise. If a key closer is
detected, the keyboard debounce unit debounces the key
entry (i.e. wait for 10 ms). After the debounce period, if
the key continues to be detected. The code of key is
directly transferred to the sensor RAM along with SHIFT
and CONTROL key status.

• FIFO/Sensor RAM and Status Logic: In keyboard or
strobed input mode, this block acts as 8-byte first-in-first-
out (FIFO) RAM. Each key code of the pressed key is
entered in the order of the entry and in the mean time read
by the CPU, till the RAM become empty.

• The status logic generates an interrupt after each FIFO read
operation till the FIFO is empty. In scanned sensor matrix
mode, this unit acts as sensor RAM. Each row of the
sensor RAM is loaded with the status of the corresponding
row of sensors in the matrix. If a sensor changes its state,
the IRQ line goes high to interrupt the CPU.

• Display Address Registers and Display RAM : The
display address register holds the address of the word
currently being written or read by the CPU to or from the
display RAM. The contents of the registers are
automatically updated by 8279 to accept the next data
entry by CPU.

8279 Internal Architecture

Return

DB0-DB7

DATA
BUFFERS

I/O
CONTROL

INTERNAL 8 BIT DATA BUS

FIFO/SENSOR
RAM STATUS

RD WR

DISPLAY
ADDRESS
REGISTERS

16*8
DISPLAY
RAM

A0CS

CONTROL
AND
TIMING
REGISTERS

8*8 FIFO/
SENSOR
RAM

KEYBOARD
DEBOUNCE
AND
CONTROL

DISPLAY
REGISTERS

TIMING
AND
CONTROL
UNIT

SCAN
COUNTER

BDOUT A0-A3
OUT B0-B3

SL0 – SL3
RL0 – RL7 CNTL/

STB

SHIFT

CLK

R
E

SE
T

8279

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Vcc
RL1
RL0
CNTL/STB
SHIFT
SL3
SL2
SL1
SL0
OUT B0
OUT B1
OUT B2
OUT B3
OUT A0
OUT A1
OUT A2
OUT A3
BD
CS
A0

RL2
RL3

CLK
IRQ
RL4
RL5
RL6
RL7

RESET
RD
WR
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
Vss

8279 Pin Configuration

Vss

BD

4

KRY DATA

8RL0-7

SHIFT

CLK

RESET

A0

CS

WR

RD

DB0 – DB7

IRQ

8

CNTL/
STB

SL0-3 4
SCAN

OUT A0-A3

OUT B0 – B3

4

Vcc

DISPLAY
DATA

CPU
INTERFACE

8279

• The signal discription of each of the pins of 8279 as
follows :

• DB0-DB7 : These are bidirectional data bus lines. The data
and command words to and from the CPU are transferred
on these lines.

• CLK : This is a clock input used to generate internal
timing required by 8279.

• RESET : This pin is used to reset 8279. A high on this line
reset 8279. After resetting 8279, its in sixteen 8-bit display,
left entry encoded scan, 2-key lock out mode. The clock
prescaler is set to 31.

• CS : Chip Select – A low on this line enables 8279 for
normal read or write operations. Other wise, this pin
should remain high.

• A0 : A high on this line indicates the transfer of a
command or status information. A low on this line
indicates the transfer of data. This is used to select one of
the internal registers of 8279.

• RD, WR (Input/Output) READ/WRITE – These input
pins enable the data buffers to receive or send data over the
data bus.

• IRQ : This interrupt output lines goes high when there is a
data in the FIFO sensor RAM. The interrupt lines goes low
with each FIFO RAM read operation but if the FIFO RAM
further contains any key-code entry to be read by the CPU,
this pin again goes high to generate an interrupt to the
CPU.

• Vss, Vcc : These are the ground and power supply lines for
the circuit.

• SL0-SL3-Scan Lines : These lines are used to scan the key
board matrix and display digits. These lines can be
programmed as encoded or decoded, using the mode
control register.

• RL0 - RL7 - Return Lines : These are the input lines
which are connected to one terminal of keys, while the
other terminal of the keys are connected to the decoded
scan lines. These are normally high, but pulled low when a
key is pressed.

• SHIFT : The status of the shift input lines is stored along
with each key code in FIFO, in scanned keyboard mode. It
is pulled up internally to keep it high, till it is pulled low
with a key closure.

• BD – Blank Display : This output pin is used to blank the
display during digit switching or by a blanking closure.

• OUT A0 – OUT A3 and OUT B0 – OUT B3 – These are
the output ports for two 16*4 or 16*8 internal display
refresh registers. The data from these lines is synchronized
with the scan lines to scan the display and keyboard. The
two 4-bit ports may also as one 8-bit port.

• CNTL/STB- CONTROL/STROBED I/P Mode : In
keyboard mode, this lines is used as a control input and
stored in FIFO on a key closure. The line is a strobed lines
that enters the data into FIFO RAM, in strobed input mode.
It has an interrupt pull up. The lines is pulled down with a
key closer.

Modes of Operation of 8279

• The modes of operation of 8279 are as follows :
1. Input (Keyboard) modes.
2. Output (Display) modes.
• Input (Keyboard) Modes : 8279 provides three input

modes. These modes are as follows:
1. Scanned Keyboard Mode : This mode allows a key

matrix to be interfaced using either encoded or decoded
scans. In encoded scan, an 8*8 keyboard or in decoded
scan, a 4*8 keyboard can be interfaced. The code of key
pressed with SHIFT and CONTROL status is stored into
the FIFO RAM.

2. Scanned Sensor Matrix : In this mode, a sensor array
can be interfaced with 8279 using either encoded or
decoded scans. With encoded scan 8*8 sensor matrix or
with decoded scan 4*8 sensor matrix can be interfaced.
The sensor codes are stored in the CPU addressable
sensor RAM.

3. Strobed input: In this mode, if the control lines goes
low, the data on return lines, is stored in the FIFO byte
by byte.

• Output (Display) Modes : 8279 provides two output
modes for selecting the display options. These are
discussed briefly.

1. Display Scan : In this mode 8279 provides 8 or 16
character multiplexed displays those can be organized as
dual 4- bit or single 8-bit display units.

2. Display Entry : (right entry or left entry mode) 8279
allows options for data entry on the displays. The display
data is entered for display either from the right side or
from the left side.

Keyboard Modes

i. Scanned Keyboard mode with 2 Key Lockout : In
this mode of operation, when a key is pressed, a
debounce logic comes into operation. During the next
two scans, other keys are checked for closure and if no
other key is pressed the first pressed key is identified.

• The key code of the identified key is entered into the
FIFO with SHIFT and CNTL status, provided the
FIFO is not full, i.e. it has at least one byte free. If the
FIFO does not have any free byte, naturally the key
data will not be entered and the error flag is set.

• If FIFO has at least one byte free, the above code is
entered into it and the 8279 generates an interrupt on IRQ
line to the CPU to inform about the previous key closures.
If another key is found closed during the first key, the
keycode is entered in FIFO.

• If the first pressed key is released before the others, the
first will be ignored. A key code is entered to FIFO only
once for each valid depression, independent of other keys
pressed along with it, or released before it.

• If two keys are pressed within a debounce cycle
(simultaneously), no key is recognized till one of them
remains closed and the other is released. The last key,
that remains depressed is considered as single valid
key depression.

ii. Scanned Keyboard with N-Key Rollover : In this
mode, each key depression is treated independently.
When a key is pressed, the debounce circuit waits for 2
keyboards scans and then checks whether the key is
still depressed. If it is still depressed, the code is
entered in FIFO RAM.

• Any number of keys can be pressed simultaneously
and recognized in the order, the keyboard scan
recorded them. All the codes of such keys are entered
into FIFO.

• In this mode, the first pressed key need not be released
before the second is pressed. All the keys are sensed in
the order of their depression, rather in the order the
keyboard scan senses them, and independent of the
order of their release.

iii. Scanned Keyboard Special Error Mode : This mode
is valid only under the N-Key rollover mode. This
mode is programmed using end interrupt / error mode
set command. If during a single debounce period (two
keyboard scans) two keys are found pressed , this is
considered a simultaneous depression and an error flag
is set.

• This flag, if set, prevents further writing in FIFO but
allows the generation of further interrupts to the CPU
for FIFO read. The error flag can be read by reading
the FIFO status word. The error Flag is set by sending
normal clear command with CF = 1.

iv. Sensor Matrix Mode : In the sensor matrix mode, the
debounce logic is inhibited. The 8-byte FIFO RAM
now acts as 8 * 8 bit memory matrix. The status of the
sensor switch matrix is fed directly to sensor RAM
matrix. Thus the sensor RAM bits contains the row-
wise and column wise status of the sensors in the
sensor matrix.

• The IRQ line goes high, if any change in sensor value
is detected at the end of a sensor matrix scan or the
sensor RAM has a previous entry to be read by the
CPU. The IRQ line is reset by the first data read
operation, if AI = 0, otherwise, by issuing the end
interrupt command. AI is a bit in read sensor RAM
word.

• There are various options of data display. For example, the
command number of characters can be 8 or 16, with each
character organised as single 8-bit or dual 4-bit codes.
Similarly there are two display formats.

• The first one is known as left entry mode or type writer
mode, since in a type writer the first character typed
appears at the left-most position, while the subsequent
characters appear successively to the right of the first one.
The other display format is known as right entry mode, or
calculator mode, since in a calculator the first character
entered appears at the rightmost position and this character
is shifted one position left when the next characters is
entered.

Display Modes

• Thus all the previously entered characters are shifted left
by one position when a new characters is entered.

i. Left Entry Mode : In the left entry mode, the data is
entered from left side of the display unit. Address 0 of
the display RAM contains the leftmost display
characters and address 15 of the RAM contains the right
most display characters. It is just like writing in our
address is automatically updated with successive reads
or writes. The first entry is displayed on the leftmost
display and the sixteenth entry on the rightmost display.
The seventeenth entry is again displayed at the leftmost
display position.

ii. Right Entry Mode : In this right entry mode, the first
entry to be displayed is entered on the rightmost display.
The next entry is also placed in the right most display
but after the previous display is shifted left by one
display position. The leftmost characters is shifted out of
that display at the seventeenth entry and is lost, i.e. it is
pushed out of the display RAM.

Command Words of 8279

• All the command words or status words are written or
read with A0 = 1 and CS = 0 to or from 8279. This
section describes the various command available in
8279.

a) Keyboard Display Mode Set – The format of the
command word to select different modes of operation of
8279 is given below with its bit definitions.

D7 D6 D5 D4 D3 D2 D1 A0D0
0 0 D D D K K 1K

D D Display modes

K K K Keyboard modes

0 0

0 1

1 0

1 1

Eight 8-bit character Left entry
Sixteen 8-bit character left entry

Eight 8-bit character Right entry

Sixteen 8-bit character Right entry

0 0 0 Encoded Scan, 2 key lockout (Default after reset)
0 0 1
0 1 0

0 1 1
1 0 0

1 0 1

1 1 0

1 1 1

Decoded Scan, 2 key lockout
Encoded Scan, N- key Roll over
Decoded Scan, N- key Roll over
Encode Scan, N- key Roll over
Decoded Scan, N- key Roll over

Strobed Input Encoded Scan
Strobed Input Decoded Scan

b) Programmable clock : The clock for operation of 8279
is obtained by dividing the external clock input signal by
a programmable constant called prescaler.

• PPPPP is a 5-bit binary constant. The input frequency is
divided by a decimal constant ranging from 2 to 31,
decided by the bits of an internal prescaler, PPPPP.

D7 D6 D5 D4 D3 D2 D1 A0D0
0 0 1 P P P P 1P

c) Read FIFO / Sensor RAM : The format of this
command is given below.

• This word is written to set up 8279 for reading FIFO/
sensor RAM. In scanned keyboard mode, AI and AAA
bits are of no use. The 8279 will automatically drive data
bus for each subsequent read, in the same sequence, in
which the data was entered.

• In sensor matrix mode, the bits AAA select one of the 8
rows of RAM. If AI flag is set, each successive read will
be from the subsequent RAM location.

D7 D6 D5 D4 D3 D2 D1 A0D0
0 1 0 AI X A A 1A

X – don’t care

AI – Auto Increment Flag

AAA – Address pointer to 8 bit FIFO RAM

d) Read Display RAM : This command enables a
programmer to read the display RAM data. The CPU
writes this command word to 8279 to prepare it for
display RAM read operation. AI is auto increment flag
and AAAA, the 4-bit address points to the 16-byte
display RAM that is to be read. If AI=1, the address will
be automatically, incremented after each read or write to
the Display RAM. The same address counter is used for
reading and writing.

D7 D6 D5 D4 D3 D2 D1 A0D0
0 1 1 AI A A A 1A

e) Write Display RAM :

AI – Auto increment Flag.
AAAA – 4 bit address for 16-bit display RAM to be
written.

D7 D6 D5 D4 D3 D2 D1 A0D0
1 0 0 AI A A A 1A

f) Display Write Inhibit/Blanking : The IW (inhibit
write flag) bits are used to mask the individual nibble
as shown in the below command word. The output lines
are divided into two nibbles (OUTA0 – OUTA3) and (
OUTB0 – OUTB3), those can be masked by setting the
corresponding IW bit to 1.

• Once a nibble is masked by setting the corresponding
IW bit to 1, the entry to display RAM does not affect the
nibble even though it may change the unmasked nibble.
The blank display bit flags (BL) are used for blanking A
and B nibbles.

• Here D0, D2 corresponds to OUTB0 – OUTB3 while D1
and D3 corresponds to OUTA0-OUTA3 for blanking and
masking.

• If the user wants to clear the display, blank (BL) bits are
available for each nibble as shown in format. Both BL bits
will have to be cleared for blanking both the nibbles.

D7 D6 D5 D4 D3 D2 D1 A0D0
1 0 1 X IW IW BL 1BL

g) Clear Display RAM : The CD2, CD1, CD0 is a
selectable blanking code to clear all the rows of the
display RAM as given below. The characters A and B
represents the output nibbles.

• CD2 must be 1 for enabling the clear display command.
If CD2 = 0, the clear display command is invoked by
setting CA=1 and maintaining CD1, CD0 bits exactly
same as above. If CF=1, FIFO status is cleared and IRQ
line is pulled down.

• Also the sensor RAM pointer is set to row 0. if CA=1,
this combines the effect of CD and CF bits. Here, CA
represents Clear All and CF as Clear FIFO RAM.

D7 D6 D5 D4 D3 D2 D1 A0D0
1 1 0 CD2 CD1 CD0 CF 1CA

CD2 CD1 CD0

1 0 X

1 1 0

1 1 1

All zeros (x don’t care) AB=00

A3-A0 =2 (0010) and B3-B0=00 (0000)

All ones (AB =FF), i.e. clear RAM

h) End Interrupt / Error mode Set : For the sensor matrix
mode, this command lowers the IRQ line and enables
further writing into the RAM. Otherwise, if a change in
sensor value is detected, IRQ goes high that inhibits
writing in the sensor RAM.

• For N-Key roll over mode, if the E bit is programmed to
be ‘1’, the 8279 operates in special Error mode. Details
of this mode are described in scanned keyboard special
error mode. X- don’t care.

D7 D6 D5 D4 D3 D2 D1 A0D0
1 1 1 E X X X 1X

8

4

4

8086

8279

INTR

AD0-AD15
A16-A19

RD
WR

PCLK
(from 8284)

Address
decoder

8282 (3)
Address
latch

8259
Interru
pt
controll
er

A0L

A1L-A3L

A0L-A19L

INT2
Shift

Control
Key board
matrix

8 columns
8 rows

8

3-8 decoder

4-16 decoder

Address
Display
character
data

Blank
display

BD

A0-3B0-3CLK
A0

CS
Reset
IOW
IOR

INT

D0-7

RL0-
7

S0-3

5VVDD

Vss 0V
Scan
lines

Return
lines

16

4

3

Data bus

Interfacing To Alphanumeric Displays

• To give directions or data values to users, many
microprocessor-controlled instruments and machines need
to display letters of the alphabet and numbers. In systems
where a large amount of data needs to be displayed a CRT
is used to display the data. In system where only a small
amount of data needs to be displayed, simple digit-type
displays are often used.

• There are several technologies used to make these digit-
oriented displays but we are discussing only the two major
types.

• These are light emitting diodes (LED) and liquid-crystal
displays (LCD).

• LCD displays use very low power, so they are often used
in portable, battery-powered instruments. They do not emit
their own light, they simply change the reflection of
available light. Therefore, for an instrument that is to be
used in low-light conditions, you have to include a light
source for LCDs or use LEDs which emit their own light.

• Alphanumeric LED displays are available in three common
formats. For displaying only number and hexadecimal
letters, simple 7-segment displays such as that as shown in
fig are used.

• To display numbers and the entire alphabet, 18 segment
displays such as shown in fig or 5 by 7 dot-matrix displays
such as that shown in fig can be used. The 7-segment type
is the least expensive, most commonly used and easiest to
interface with, so we will concentrate first on how to
interface with this type.

1. Directly Driving LED Displays: Figure shows a circuit
that you might connect to a parallel port on a
microcomputer to drive a single 7-segment , common-
anode display. For a common-anode display, a segment
is tuned on by applying a logic low to it.

• The 7447 converts a BCD code applied to its inputs to
the pattern of lows required to display the number
represented by the BCD code. This circuit connection is
referred to as a static display because current is being
passed through the display at all times.

• Each segment requires a current of between 5 and 30mA to
light. Let’s assume you want a current of 20mA. The
voltage drop across the LED when it is lit is about 1.5V.

• The output low voltage for the 7447 is a maximum of 0.4V
at 40mA. So assume that it is about 0.2V at 20mA.
Subtracting these two voltage drop from the supply voltage
of 5V leaves 3.3V across the current limiting resistor.
Dividing 3.3V by 20mA gives a value of 168Ω for the
current-limiting resistor. The voltage drops across the LED
and the output of 7447 are not exactly predictable and
exact current through the LED is not critical as long as we
don’t exceed its maximum rating.

2. Software-Multiplexed LED Display:
• The circuit in fig works for driving just one or two LED

digits with a parallel output port. However, this scheme
has several problem if you want to drive, eight digits.

• The first problem is power consumption. For worst-case
calculations, assume that all 8 digits are displaying the
digit 8, so all 7 segments are all lit. Seven segment time
20mA per segment gives a current of 140mA per digit.
Multiplying this by 8 digits gives a total current of
1120mA or 1.12A for 8 digits.

• A second problem of the static approach is that each
display digit requires a separate 7447 decoder, each of
which uses of another 13mA. The current required by the
decoders and the LED displays might be several times the
current required by the reset of the circuitry in the
instrument.

• To solve the problem of the static display approach, we use
a multiplex method, example for an explanation of the
multiplexing.

• The fig shows a circuit you can add to a couple of
microcomputer ports to drive some common anode LED
displays in a multiplexed manner. The circuit has only one
7447 and that the segment outputs of the 7447 are bused in
parallel to the segment inputs of all the digits.

• The question that may occur to you on first seeing this is:
Aren’t all the digits going to display the same number?
The answer is that they would if all the digits were turned
on at the same time. The tricky of multiplexing displays is
that only one display digit is turned on at a time.

• The PNP transistor is series with the common anode of
each digit acts as on/off switch for that digit. Here’s how
the multiplexing process works.

• The BCD code for digit 1 is first output from port B to the
7447. the 7447 outputs the corresponding 7-segment code
on the segment bus lines. The transistor connected to digit
1 is then turned on by outputting a low to the appropriate
bit of port A. All the rest of the bits of port A are made
high to make sure no other digits are turned on. After 1 or
2 ms, digit 1 is turned off by outputting all highs to port A.

• The BCD code for digit 2 is then output to the 7447 on
port B, and a word to turn on digit 2 is output on port A.

• After 1 or 2 ms, digit 2 is turned off and the process is
repeated for digit 3. the process is continued until all the
digits have had a turn. Then digit 1 and the following digits
are lit again in turn.

• A procedure which is called on an interrupt basis every
2ms to keep these displays refreshed wit some values
stored in a table. With 8 digits and 2ms per digit, you get
back to digit 1 every 16ms or about 60 times a second.

• This refresh rate is fast enough so that the digits will each
appear to be lit all time. Refresh rates of 40 to 200 times a
second are acceptable.

• The immediately obvious advantages of multiplexing the
displays are that only one 7447 is required, and only one
digit is lit at a time. We usually increase the current per
segment to between 40 and 60 mA for multiplexed
displays so that they will appear as bright as they would if
they were not multiplexed. Even with this increased
segment current, multiplexing gives a large saving in
power and parts.

• The software-multiplexed approach we have just described
can also be used to drive 18-segment LED devices and dot-
matrix LED device. For these devices, however you
replace the 7447 in fig with ROM which generates the
required segment codes when the ASCII code for a
character is applied to the address inputs of the ROM.

+ 5 V

150 Ω
Each

7447

+ 5 V

Vcc

GND

+ 5 V

A B C D

BCD INPUTS

a b c d e f g

1 2 67

3

4

5

LT

RBI

BI

13 12 11 10 9 15 14

Circuit for driving single 7-segment LED display with 7447

7447
GND

Vcc

D C B A

OUTPUT
PORT

A

D6
D5
D4
D3
D2
D1
D0

+ 5V

R1 R2 R3 R4 R5 R6
R7

OUTPUT
PORT

B

+ 5 V

D0
D1

Q1 Q2 Q3 Q4 Q5 Q6 Q7

150Ω
150Ω150Ω150Ω

150Ω150Ω
150ΩMSD LSD

D2
D3

Liquid Crystal Display

• Liquid Crystal displays are created by sandwiching a thin
10-12 µm layer of a liquid-crystal fluid between two glass
plates. A transparent, electrically conductive film or
backplane is put on the rear glass sheet. Transparent
sections of conductive film in the shape of the desired
characters are coated on the front glass plate.

• When a voltage is applied between a segment and the
backplane, an electric field is created in the region under
the segment. This electric field changes the transmission of
light through the region under the segment film.

• There are two commonly available types of LCD :
dynamic scattering and field-effect.

• The Dynamic scattering types of LCD: It scrambles the
molecules where the field is present. This produces an
etched-glass-looking light character on a dark background.

• Field-effect types use polarization to absorb light where
the electric field is present. This produces dark characters
on a silver- gray background.

• Most LCD’s require a voltage of 2 or 3 V between the
backplane and a segment to turn on the segment.

• We cannot just connect the backplane to ground and drive
the segment with the outputs of a TTL decoder. The reason
for this is a steady dc voltage of more than about 50mV is
applied between a segment and the backplane.

• To prevent a dc buildup on the segments, the segment-
drive signals for LCD must be square waves with a
frequency of 30 to 150 Hz.

• Even if you pulse the TTL decoder, it still will not work
because the output low voltage of TTL devices is greater
than 50mV.

• CMOS gates are often used to drive LCDs.

• The Following fig shows how two CMOS gate outputs can
be connected to drive an LCD segment and backplane.

• The off segment receives the same drive signal as the
backplane. There is never any voltage between them, so no
electric field is produced. The waveform for the on
segment is 180 out of phase with the backplane signal, so
the voltage between this segment and the backplane will
always be +V.

• The logic for this signal, a square wave and its
complement. To the driving gates, the segment-backplane
sandwich appears as a somewhat leaky capacitor.

• The CMOS gates can be easily supply the current required
to charge and discharge this small capacitance.

• Older inexpensive LCD displays turn on and off too slowly
to be multiplexed the way we do LED display.

• At 0c some LCD may require as mush as 0.5s to turn on or
off. To interface to those types we use a nonmultiplexed
driver device.

• More expensive LCD can turn on and off faster, so they
are often multiplexed using a variety of techniques.

• In the following section we show you how to interface a
nonmultiplexed LCD to a microprocessor such as SDK-86.

• Intersil ICM7211M can be connected to drive a 4-digit,
nonmultiplexed, 7-segment LCD display.

• The 7211M input can be connected to port pins or directly
to microcomputer bus. We have connected the CS inputs to
the Y2 output of the 74LS138 port decoder.

• According to the truth table the device will then be
addressable as ports with a base address of FF10H. SDK-
86 system address lines A2 is connected to the digit-select
input (DS2) and system address lines A1 is connected to
the DS1 input. This gives digit 4 a system address of
FF10H.

A8-A15 A5-A7 A4 A3 A2 A1 A0 M/IO Y Output
Selected

System Base
Address

Device

1 0 X
1
1
1
1
1
1
1

0
0
0
0
0
0
0

0
0

0
0

0 0
0
0
0
0
0
0
0

0
0
0
1
1
1
1X

X
X
X
X
X
X
X

X
X
X
X
X
X
X1 1

1

1
1

0
1
0
1
0
1
0 00

1
2
3
4
5
6
7

F F 0 0
F F 0 8
F F 1 0
F F 1 8
F F 0 1
F F 0 9
F F 1 1
F F 1 9

8259A #1
8259A #2

8254

ALL OTHER STATES NONE

Fig : Truth table for 74LS138 address decoder

• Digit 3 will be addressed at FF12H, digit 2 at FF14H and
digit 1 at FF16H.

• The data inputs are connected to the lower four lines of the
SDK-86 data bus. The oscillator input is left open. To
display a character on one of the digits, you simply keep
the 4-bit hex code for that digit in the lower 4 bits of the
AL register and output it to the system address for that
digit.

• The ICM7211M converts the 4-bit hex code to the required
7-segment code.

• The rising edge of the CS input signal causes the 7-
segment code to be latched in the output latches for the
address digit.

• An internal oscillator automatically generates the segment
and backplane drive waveforms as in fig . For interfacing
with the LCD displays which can be multiplexed the
Intersil ICM7233 can be use.

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Enable Detector

Back
Plane
Driver
Enable

Back Plane
Output

Oscillator
16KHz Free
Running

/ 128One
Shot

2 t o 4
Decoder

Enable

+5 V OSC Enable

74LS138
Y2

CS2

CS1

A1

A2

2 bit
Latch

Enable

4 – bit
latch

Enable

DataAD0
AD1
AD2
AD3

DS1

DS2

Segment Outputs
D4

Segment Outputs Segment Outputs Segment Outputs
D3 D2 D1

Fig : Circuit for interfacing four LCD digits to an SDK-86 bus using ICM7211M

ICM7211M

PIO 8255

• The parallel input-output port chip 8255 is also called as
programmable peripheral input-output port. The Intel’s
8255 is designed for use with Intel’s 8-bit, 16-bit and
higher capability microprocessors. It has 24 input/output
lines which may be individually programmed in two
groups of twelve lines each, or three groups of eight lines.
The two groups of I/O pins are named as Group A and
Group B. Each of these two groups contains a subgroup of
eight I/O lines called as 8-bit port and another subgroup of
four lines or a 4-bit port. Thus Group A contains an 8-bit
port A along with a 4-bit port. C upper.

• The port A lines are identified by symbols PA0-PA7 while
the port C lines are identified as PC4-PC7. Similarly, Group
B contains an 8-bit port B, containing lines PB0-PB7 and a
4-bit port C with lower bits PC0- PC3. The port C upper
and port C lower can be used in combination as an 8-bit
port C.

• Both the port C are assigned the same address. Thus one
may have either three 8-bit I/O ports or two 8-bit and two
4-bit ports from 8255. All of these ports can function
independently either as input or as output ports. This can
be achieved by programming the bits of an internal register
of 8255 called as control word register (CWR).

• The internal block diagram and the pin configuration of
8255 are shown in fig.

• The 8-bit data bus buffer is controlled by the read/write
control logic. The read/write control logic manages all of
the internal and external transfers of both data and control
words.

• RD, WR, A1, A0 and RESET are the inputs provided by the
microprocessor to the READ/ WRITE control logic of
8255. The 8-bit, 3-state bidirectional buffer is used to
interface the 8255 internal data bus with the external
system data bus.

• This buffer receives or transmits data upon the execution
of input or output instructions by the microprocessor. The
control words or status information is also transferred
through the buffer.

• The signal description of 8255 are briefly presented as
follows :

• PA7-PA0: These are eight port A lines that acts as either
latched output or buffered input lines depending upon the
control word loaded into the control word register.

• PC7-PC4 : Upper nibble of port C lines. They may act as
either output latches or input buffers lines.

• This port also can be used for generation of handshake
lines in mode 1 or mode 2.

• PC3-PC0 : These are the lower port C lines, other details
are the same as PC7-PC4 lines.

• PB0-PB7 : These are the eight port B lines which are used
as latched output lines or buffered input lines in the same
way as port A.

• RD : This is the input line driven by the microprocessor
and should be low to indicate read operation to 8255.

• WR : This is an input line driven by the microprocessor. A
low on this line indicates write operation.

• CS : This is a chip select line. If this line goes low, it
enables the 8255 to respond to RD and WR signals,
otherwise RD and WR signal are neglected.

• A1-A0 : These are the address input lines and are driven by
the microprocessor. These lines A1-A0 with RD, WR and
CS from the following operations for 8255. These address
lines are used for addressing any one of the four registers,
i.e. three ports and a control word register as given in table
below.

• In case of 8086 systems, if the 8255 is to be interfaced
with lower order data bus, the A0 and A1 pins of 8255 are
connected with A1 and A2 respectively.

Input (Read) cycleRD WR CS A1 A0
Port A to Data bus
Port B to Data bus
Port C to Data bus
CWR to Data bus

0
1
0

1 000
0
0
0 11

1
1
1
1

00
0
0

Output (Write) cycleRD WR CS A1 A0
Data bus to Port A
Data bus to Port B
Data bus to Port C
Data bus to CWR

0
1
0

000
0
0
0 11

1
00

0
0

1
1
1
1

FunctionRD WR CS A1 A0
Data bus tristated
Data bus tristated

X
X

X1X
1 X0

X
1

Control Word Register

• D0-D7 : These are the data bus lines those carry data or
control word to/from the microprocessor.

• RESET : A logic high on this line clears the control word
register of 8255. All ports are set as input ports by default
after reset.

Block Diagram of 8255 (Architecture)

• It has a 40 pins of 4 groups.
1. Data bus buffer
2. Read Write control logic
3. Group A and Group B controls
4. Port A, B and C
• Data bus buffer: This is a tristate bidirectional buffer

used to interface the 8255 to system databus. Data is
transmitted or received by the buffer on execution of
input or output instruction by the CPU.

• Control word and status information are also transferred
through this unit.

• Read/Write control logic: This unit accepts control
signals (RD, WR) and also inputs from address bus and
issues commands to individual group of control blocks
(Group A, Group B).

• It has the following pins.
a) CS – Chipselect : A low on this PIN enables the

communication between CPU and 8255.
b) RD (Read) – A low on this pin enables the CPU to read

the data in the ports or the status word through data bus
buffer.

c) WR (Write) : A low on this pin, the CPU can write
data on to the ports or on to the control register through
the data bus buffer.

d) RESET: A high on this pin clears the control register
and all ports are set to the input mode

e) A0 and A1 (Address pins): These pins in conjunction
with RD and WR pins control the selection of one of the
3 ports.

• Group A and Group B controls : These block receive
control from the CPU and issues commands to their
respective ports.

• Group A - PA and PCU (PC7 –PC4)
• Group B - PCL (PC3 – PC0)
• Control word register can only be written into no read

operation of the CW register is allowed.
• a) Port A: This has an 8 bit latched/buffered O/P and 8

bit input latch. It can be programmed in 3 modes – mode 0,
mode 1, mode 2.
b) Port B: This has an 8 bit latched / buffered O/P and 8

bit input latch. It can be programmed in mode 0, mode1.

c) Port C : This has an 8 bit latched input buffer and 8 bit
out put latched/buffer. This port can be divided into two 4
bit ports and can be used as control signals for port A and
port B. it can be programmed in mode 0.

Modes of Operation of 8255

• These are two basic modes of operation of 8255. I/O mode
and Bit Set-Reset mode (BSR).

• In I/O mode, the 8255 ports work as programmable I/O
ports, while in BSR mode only port C (PC0-PC7) can be
used to set or reset its individual port bits.

• Under the I/O mode of operation, further there are three
modes of operation of 8255, so as to support different
types of applications, mode 0, mode 1 and mode 2.

• BSR Mode: In this mode any of the 8-bits of port C can be
set or reset depending on D0 of the control word. The bit to
be set or reset is selected by bit select flags D3, D2 and D1
of the CWR as given in table.

• I/O Modes :
a) Mode 0 (Basic I/O mode): This mode is also called as
basic input/output mode. This mode provides simple input
and output capabilities using each of the three ports. Data
can be simply read from and written to the input and output
ports respectively, after appropriate initialisation.

D3 D2 D1 Selected bits of port C

0

1

D00 0
0 0
0 01

1

0 1 1
1
1

0 0
0 1

1 1 0
1 1

D1
D2
D3
D4
D5
D6
D7

BSR Mode : CWR Format

8
2
5
5

8
2
5
5

PA

PCU

PCL

PB

PA

PCU

PCL

PB

PA6 – PA7

PC4 – PC7

PC0-PC3

PB0 – PB7

All Output Port A and Port C acting as
O/P. Port B acting as I/P

PA

PC

PB0 – PB7

Mode 0

• The salient features of this mode are as listed below:
1. Two 8-bit ports (port A and port B)and two 4-bit ports

(port C upper and lower) are available. The two 4-bit
ports can be combinedly used as a third 8-bit port.

2. Any port can be used as an input or output port.
3. Output ports are latched. Input ports are not latched.
4. A maximum of four ports are available so that overall 16

I/O configuration are possible.
• All these modes can be selected by programming a

register internal to 8255 known as CWR.

• The control word register has two formats. The first format
is valid for I/O modes of operation, i.e. modes 0, mode 1
and mode 2 while the second format is valid for bit
set/reset (BSR) mode of operation. These formats are
shown in following fig.

D6D7 D0D1D2D3D4D5

1 X X X

0-for BSR mode Bit select flags
0- Reset

1- Set

I/O Mode Control Word Register Format and
BSR Mode Control Word Register Format

D3, D2, D1 are from 000 to 111 for bits PC0 TO PC7

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PB3

PB4

PB5

PB6

PB7

Vcc
D7

D6

D5

D4

D3

D2

D1

D0

Reset
WR
PA7

PA6

PA5

PA4

PB2

PB1

PB0

PC3

PC2

PC1

PC0

PC4

PC5

PC6

PC7

A0

A1

GND
CS
RD

PA0

PA1

PA2

PA3

8255A

8255A Pin Configuration

8255A

D0-D7

CS
RESET

A0

A1

RD

WR GND

Vcc

PB0-PB7

PC0-PC3

PC4-PC7

PA0-PA7

Signals of 8255

Block Diagram of 8255

D0-D7 Data bus
Buffer

1

READ/
WRITE
Control
Logic

RD
WR

A0
A1

RESET

CS

Group B
control

Group A
control

Group A
Port A(8)

Group A
Port C
upper(4)

Group B
Port C
Lower(4)

Group B
Port B(8)

2

3 4

8 bit int data bus

PB7-PB0

PC0-PC3

PC7-PC4

PA0-PA7

Control Word Format of 8255

Group - B

PCL

PB

Mode
Select

1 Input
0 Output
1 Input
0 Output

0 mode- 0
1 mode- 1

D0D1D2D3D4D6 D5D7

Mode for
Port A

PA PC U Mode
for PB

PB PC L

Mode
Select
of PA

00 – mode 0
01 – mode 1
10 – mode 2

PA
1 Input
0 Output

Group - A

PC u 1 Input
0 Output

Mode Set flag
1- active
0- BSR mode

b) Mode 1: (Strobed input/output mode) In this mode the
handshaking control the input and output action of the
specified port. Port C lines PC0-PC2, provide strobe or
handshake lines for port B. This group which includes port
B and PC0-PC2 is called as group B for Strobed data
input/output. Port C lines PC3-PC5 provide strobe lines for
port A. This group including port A and PC3-PC5 from
group A. Thus port C is utilized for generating handshake
signals. The salient features of mode 1 are listed as
follows:

1. Two groups – group A and group B are available for
strobed data transfer.

2. Each group contains one 8-bit data I/O port and one 4-bit
control/data port.

3. The 8-bit data port can be either used as input and output
port. The inputs and outputs both are latched.

4. Out of 8-bit port C, PC0-PC2 are used to generate control
signals for port B and PC3-PC5 are used to generate
control signals for port A. the lines PC6, PC7 may be
used as independent data lines.

• The control signals for both the groups in input and output
modes are explained as follows:

Input control signal definitions (mode 1):
• STB(Strobe input) – If this lines falls to logic low level,

the data available at 8-bit input port is loaded into input
latches.

• IBF (Input buffer full) – If this signal rises to logic 1, it
indicates that data has been loaded into latches, i.e. it
works as an acknowledgement. IBF is set by a low on STB
and is reset by the rising edge of RD input.

• INTR (Interrupt request) – This active high output signal
can be used to interrupt the CPU whenever an input device
requests the service. INTR is set by a high STB pin and a
high at IBF pin. INTE is an internal flag that can be
controlled by the bit set/reset mode of either PC4(INTEA)
or PC2(INTEB) as shown in fig.

• INTR is reset by a falling edge of RD input. Thus an
external input device can be request the service of the
processor by putting the data on the bus and sending the
strobe signal.

Output control signal definitions (mode 1) :
• OBF (Output buffer full) – This status signal, whenever

falls to low, indicates that CPU has written data to the
specified output port. The OBF flip-flop will be set by a
rising edge of WR signal and reset by a low going edge at
the ACK input.

• ACK (Acknowledge input) – ACK signal acts as an
acknowledgement to be given by an output device. ACK
signal, whenever low, informs the CPU that the data
transferred by the CPU to the output device through the
port is received by the output device.

• INTR (Interrupt request) – Thus an output signal that can
be used to interrupt the CPU when an output device
acknowledges the data received from the CPU. INTR is set
when ACK, OBF and INTE are 1. It is reset by a falling
edge on WR input. The INTEA and INTEB flags are
controlled by the bit set-reset mode of PC6 and PC2
respectively.

D0D1D2D3D4D5D6D7

1 1 1/000 X X X

Mode 1 Control Word Group A
I/P

Mode 1 Control Word Group B
I/P

PB0 – PB7

INTEB PC2
PC1

PC0 INTR
A

IBFB

STBB

I/O

INTRA

IBFA

STBA
INTEA

PA0 – PA7

RD

PC3

PC5

PC4

PC6 – PC7

1 - Input
0 - Output

For PC6 – PC7

D0D1D2D3D4D5D6D7

1 1 1X X X X X

RD

Input control signal definitions in
Mode 1

DATA from
Peripheral

RD

INTR

STB

IBF

Mode 1 Strobed Input Data Transfer

Data OP to
Port

ACK

INTR

OBF

WR

Mode 1 Strobed Data Output

D0D1D2D3D4D5D6D7

1 1 1/000 X X X

Mode 1 Control Word Group A Mode 1 Control Word Group B

PB0 –
PB7

INTEB PC1
PC2

PC0 INTRB

ACKB

OBFB

I/O

INTRA

ACKA

OBF
A

INTEA

PA0 – PA7

WR

PC3

PC6

PC7

PC4 – PC5

1 - Input
0 - Output

For PC4 – PC5

D0D1D2D3D4D5D6D7

1 1 0X X X X X

Output control signal definitions Mode 1

• Mode 2 (Strobed bidirectional I/O): This mode of
operation of 8255 is also called as strobed bidirectional
I/O. This mode of operation provides 8255 with an
additional features for communicating with a peripheral
device on an 8-bit data bus. Handshaking signals are
provided to maintain proper data flow and synchronization
between the data transmitter and receiver. The interrupt
generation and other functions are similar to mode 1.

• In this mode, 8255 is a bidirectional 8-bit port with
handshake signals. The Rd and WR signals decide whether
the 8255 is going to operate as an input port or output port.

• The Salient features of Mode 2 of 8255 are listed as
follows:

1. The single 8-bit port in group A is available.
2. The 8-bit port is bidirectional and additionally a 5-bit

control port is available.
3. Three I/O lines are available at port C.(PC2 – PC0)
4. Inputs and outputs are both latched.
5. The 5-bit control port C (PC3-PC7) is used for

generating / accepting handshake signals for the 8-bit
data transfer on port A.

• Control signal definitions in mode 2:
• INTR – (Interrupt request) As in mode 1, this control

signal is active high and is used to interrupt the
microprocessor to ask for transfer of the next data byte
to/from it. This signal is used for input (read) as well as
output (write) operations.

• Control Signals for Output operations:
• OBF (Output buffer full) – This signal, when falls to low

level, indicates that the CPU has written data to port A.

• ACK (Acknowledge) This control input, when falls to
logic low level, acknowledges that the previous data byte
is received by the destination and next byte may be sent by
the processor. This signal enables the internal tristate
buffers to send the next data byte on port A.

• INTE1 (A flag associated with OBF) This can be
controlled by bit set/reset mode with PC6.

• Control signals for input operations :
• STB (Strobe input) A low on this line is used to strobe in

the data into the input latches of 8255.

• IBF (Input buffer full) When the data is loaded into input
buffer, this signal rises to logic ‘1’. This can be used as an
acknowledge that the data has been received by the
receiver.

• The waveforms in fig show the operation in Mode 2 for
output as well as input port.

• Note: WR must occur before ACK and STB must be
activated before RD.

Data from 8085 Data towards
8255

RD

Data bus

IBF

STB

ACK

INTR

OBF

WR

Mode 2 Bidirectional Data Transfer

• The following fig shows a schematic diagram containing
an 8-bit bidirectional port, 5-bit control port and the
relation of INTR with the control pins. Port B can either be
set to Mode 0 or 1 with port A(Group A) is in Mode 2.

• Mode 2 is not available for port B. The following fig
shows the control word.

• The INTR goes high only if either IBF, INTE2, STB and
RD go high or OBF, INTE1, ACK and WR go high. The
port C can be read to know the status of the peripheral
device, in terms of the control signals, using the normal
I/O instructions.

D0D1D2D3D4D5D6D7

1 X XX 1 1/0 1/0 1/0

1 - Input
0 - Output

PC2 – PC0

1/0 mode

Port A
mode 2

Port B mode
0-mode 0
1- mode 1

Port B
1- I/P
0-O/P

Mode 2 control word

WR

RD

PC3

PC7
PC6

PC4

PC5

INTE 1

I/O

IBF

STB

ACK

OBF

INTR

PA0-PA7

INTE 2

3

Mode 2 pins

Interfacing a Microprocessor To
Keyboard

• When you press a key on your computer, you are
activating a switch. There are many different ways of
making these switches. An overview of the construction
and operation of some of the most common types.

1. Mechanical key switches: In mechanical-switch keys,
two pieces of metal are pushed together when you press
the key. The actual switch elements are often made of a
phosphor-bronze alloy with gold platting on the contact
areas. The key switch usually contains a spring to return
the key to the nonpressed position and perhaps a small
piece of foam to help damp out bouncing.

Next Page

• Some mechanical key switches now consist of a molded
silicon dome with a small piece of conductive rubber foam
short two trace on the printed-circuit board to produce the
key pressed signal.

• Mechanical switches are relatively inexpensive but they
have several disadvantages. First, they suffer from contact
bounce. A pressed key may make and break contact
several times before it makes solid contact.

• Second, the contacts may become oxidized or dirty with
age so they no longer make a dependable connection.

Next Page

• Higher-quality mechanical switches typically have a
rated life time of about 1 million keystrokes. The
silicone dome type typically last 25 million keystrokes.

2. Membrane key switches: These switches are really a
special type of mechanical switches. They consist of a
three-layer plastic or rubber sandwich.

• The top layer has a conductive line of silver ink running
under each key position. The bottom layer has a
conductive line of silver ink running under each column
of keys.

Next Page

• When u press a key, you push the top ink line through
the hole to contact the bottom ink line.

• The advantages of membrane keyboards is that they can
be made as very thin, sealed units.

• They are often used on cash registers in fast food
restaurants. The lifetime of membrane keyboards varies
over a wide range.

3. Capacitive key switches: A capacitive keyswitch has two
small metal plates on the printed circuit board and
another metal plate on the bottom of a piece of foam.

Next Page

• When u press the key, the movable plate is pushed closer
to fixed plate. This changes the capacitance between the
fixed plates. Sense amplifier circuitry detects this change
in capacitance and produce a logic level signal that
indicates a key has been pressed.

• The big advantages of a capacitive switch is that it has no
mechanical contacts to become oxidized or dirty.

• A small disadvantage is the specified circuitry needed to
detect the change in capacitance.

• Capacitive keyswitches typically have a rated lifetime of
about 20 million keystrokes.

Next Page

4. Hall effect keyswitches: This is another type of switch
which has no mechanical contact. It takes advantage of
the deflection of a moving charge by a magnetic field.

• A reference current is passed through a semiconductor
crystal between two opposing faces. When a key is
pressed, the crystal is moved through a magnetic field
which has its flux lines perpendicular to the direction of
current flow in the crystal.

• Moving the crystal through the magnetic field causes a
small voltage to be developed between two of the other
opposing faces of the crystal.

Next Page

• This voltage is amplified and used to indicate that a key
has been pressed. Hall effect sensors are also used to detect
motion in many electrically controlled machines.

• Hall effect keyboards are more expensive because of the
more complex switch mechanism, but they are very
dependable and have typically rated lifetime of 100 million
or more keystrokes.

HALL
VOLTAGE

Reference
Current

Key
Motion

Magnetic Field

HALL EFFECT

• In most keyboards, the keyswitches are connecting in a
matrix of rows and columns, as shown in fig.

• We will use simple mechanical switches for our
examples, but the principle is same for other type of
switches.

• Getting meaningful data from a keyboard, it requires the
following three major tasks:

1. Detect a keypress.
2. Debounce the keypress.
3. Encode the keypress

Keyboard Circuit Connections and
Interfacing

Next Page

• Three tasks can be done with hardware, software, or a
combination of two, depending on the application.

1. Software Keyboard Interfacing:
• Circuit connection and algorithm : The following fig

(a) shows how a hexadecimal keypad can be connected
to a couple of microcomputer ports so the three
interfacing tasks can be done as part of a program.

• The rows of the matrix are connected to four output port
lines. The column lines of matrix are connected to four
input-port lines. To make the program simpler, the row
lines are also connected to four input lines.

Next Page

• When no keys are pressed, the column lines are held high
by the pull-up resistor connected to +5V. Pressing a key
connects a row to a column. If a low is output on a row and
a key in that row is pressed, then the low will appear on the
column which contains that key and can be detected on the
input port.

• If you know the row and column of the pressed key, you
then know which key was pressed, and you can convert
this information into any code you want to represent that
key.

Next Page

• The following flow chart for a procedure to detect,
debounce and produce the hex code for a pressed key.

• An easy way to detect if any key in the matrix is pressed is
to output 0’s to all rows and then check the column to see
if a pressed key has connected a low to a column.

• In the algorithm we first output lows to all the rows and
check the columns over and over until the column are all
high. This is done before the previous key has been
released before looking for the next one. In the standard
keyboard terminology, this is called two-key lockout.

Next Page

KEYBOARD

ZERO TO ALL
ROWS

READ
COLUMNS

READ
COLUMNS

KEY
PRESSED
?

ALL
KEYS
OPEN ?

WAIT 20ms

READ
COLUMNS

KEY
PRESSED
?

OUTPUT ZERO
TO ONE ROW

READ
COLUMNS

KEY
FOUND
?

CONVERT TO
HEX

RETURN

E
N
C
O
D
E

YES

NO

YES

NO

YES

NO

YES

NO

D
E

B
O
U
N
C
E

D
E
T
E
C
T

FLOW CHART Next Page

• Once the columns are found to be all high, the program
enters another loop, which waits until a low appears on one
of the columns, indicating that a key has been pressed.
This second loop does the detect task for us. A simple 20-
ms delay procedure then does the debounce task.

• After the debounce time, another check is made to see if
the key is still pressed. If the columns are now all high,
then no key is pressed and the initial detection was caused
by a noise pulse or a light brushing past a key. If any of the
columns are still low, then the assumption is made that it
was a valid keypress.

Next Page

• The final task is to determine the row and column of the
pressed key and convert this row and column information
to the hex code for the pressed key. To get the row and
column information, a low is output to one row and the
column are read. If none of the columns is low, the pressed
key is not in that row. So the low is rotated to the next row
and the column are checked again. The process is repeated
until a low on a row produces a low on one of the column.

• The pressed key then is in the row which is low at that
time.

Next Page

• The connection fig shows the byte read in from the input
port will contain a 4-bit code which represents the row of
the pressed key and a 4-bit code which represent the
column of the pressed key.

• Error trapping: The concept of detecting some error
condition such as “ no match found” is called error
trapping. Error trapping is a very important part of real
programs. Even in simple programs, think what might
happen with no error trap if two keys in the same row were
pressed at exactly at the same time and a column code with
two lows in it was produced.

Next Page

• This code would not match any of the row-column codes
in the table, so after all the values in the table were
checked, assigned register in program would be
decremented from 0000H to FFFFH. The compare
decrement cycle would continue through 65,536 memory
locations until, by change the value in a memory location
matched the row-column code. The contents of the lower
byte register at hat point would be passed back to the
calling routine. The changes are 1 in 256 that would be the
correct value for one of the pressed keys. You should keep
an error trap in a program whenever there is a chance for it.

Next Page

2. Keyboard Interfacing with Hardware: For the system
where the CPU is too busy to be bothered doing these
tasks in software, an external device is used to do them.

• One of a MOS device which can be do this is the
General Instruments AY5-2376 which can be connected
to the rows and columns of a keyboard switch matrix.

• The AY5-2376 independently detects a keypress by
cycling a low down through the rows and checking the
columns. When it finds a key pressed, it waits a
debounce time.

Next Page

• If the key is still pressed after the debounce time, the AY5-
2376 produces the 8-bit code for the pressed key and send
it out to microcomputer port on 8 parallel lines. The
microcomputer knows that a valid ASCII code is on the
data lines, the AY5-2376 outputs a strobe pulse.

• The microcomputer can detect this strobe pulse and read in
ASCII code on a polled basis or it can detect the strobe
pulse on an interrupt basis.

• With the interrupt method the microcomputer doesn’t have
to pay any attention to the keyboard until it receives an
interrupt signal.

Next Page

• So this method uses very little of the microcomputer time.
The AY5-2376 has a feature called two-key rollover. This
means that if two keys are pressed at nearly the same time,
each key will be detected, debounced and converted to
ASCII.

• The ASCII code for the first key and a strobe signal for it
will be sent out then the ASCII code for the second key
and a strobe signal for it will be sent out and compare this
with two-key lockout.

Next Page

D0

D1

D2

D3

Output port 01

Input port
02

+ 5V

10KΩ

D0

D1

D
2

D
3

D
4

D
5

D
6

D
7

D0

D1

D2

D3

D4

D5

D6

D7

D3

D2

D1

D0

0

C D E F

8 9 A B

1 2 3

4 5 6 7

Fig: (a) Port connections

Example

• Interface a 4 * 4 keyboard with 8086 using 8255 an write
an ALP for detecting a key closure and return the key code
in AL. The debounce period for a key is 10ms. Use
software debouncing technique. DEBOUNCE is an
available 10ms delay routine.

• Solution: Port A is used as output port for selecting a row
of keys while Port B is used as an input port for sensing a
closed key. Thus the keyboard lines are selected one by
one through port A and the port B lines are polled
continuously till a key closure is sensed. The routine
DEBOUNCE is called for key debouncing. The key code
is depending upon the selected row and a low sensed
column.

Next Page

+ 5V

10KΩ0

C D E F

8 9 A B

1 2 3

4 5 6 7

Interfacing 4 * 4 Keyboard

10KΩ

10KΩ

10KΩ

10
K
Ω

10
K
Ω

10
K
Ω

10
K
Ω

8255

PB0

PB1

PB2

PB3

PA0

PA1

PA2

PA3

CS

A0

A1

A1

A2

D0-D7

IORD

LOWR

RESET

A0

A14

A15
A12A13

Next Page

• The higher order lines of port A and port B are left unused.
The address of port A and port B will respectively 8000H
and 8002H while address of CWR will be 8006H. The
flow chart of the complete program is as given. The control
word for this problem will be 82H. Code segment CS is
used for storing the program code.

• Key Debounce : Whenever a mechanical push-button is
pressed or released once, the mechanical components of
the key do not change the position smoothly, rather it
generates a transient response .

Next Page

START

Initialise 8255 row,
column counter and key
code reg.

Key
Closed

Wait for Debounce

Set row counter

Ground one row

Read Column counter

Set column counter

Check for key pressed

Transfer code to accumulator

STOP

Is the key
found ?

Decrement row counter

Increment code register
Decrement column counter

column
counter=0?

row
Counter =0 ?

No

No

No

Yes

Flow chart
Next Page

• These transient variations may be interpreted as the
multiple key pressure and responded accordingly by the
microprocessor system.

• To avoid this problem, two schemes are suggested: the first
one utilizes a bistable multivibrator at the output of the key
to debounce .

• The other scheme suggests that the microprocessor should
be made to wait for the transient period (usually 10ms),
so that the transient response settles down and reaches a
steady state.

Next Page

• A logic ‘0’ will be read by the microprocessor when the
key is pressed.

• In a number of high precision applications, a designer may
have two options- the first is to have more than one 8-bit
port, read (write) the port one by one and then from the
multibyte data, the second option allows forming 16-bit
ports using two 8-bit ports and use 16-bit read or write
operations.

Next Page

+ 5 V

V0

A Mechanical Key

Logic 0

Logic 1

Key released
Key pressed Key released

Logic 0

Response

Interface

• We have four common types of memory:
• Read only memory (ROM)
• Flash memory (EEPROM)
• Static Random access memory (SARAM)
• Dynamic Random access memory (DRAM).
• Pin connections common to all memory devices are: The address input, data

output or input/outputs, selection input and control input used to select a read or
write operation.

• Address connections: All memory devices have address inputs that select a
memory location within the memory device. Address inputs are labeled from A0
to An.

• Data connections: All memory devices have a set of data outputs or
input/outputs. Today many of them have bi-directional common I/O pins.

• Selection connections: Each memory device has an input, that selects or enables
the memory device. This kind of input is most often called a chip select (CS),
chip enable (CE) or simply select (S) input.

C O

A

A

A

A

O

O

O

O

WRITW

SELEC REA
MEMORY COMPONENT ILLUSTRATING THE ADDRESS, DATA

,
CONTROL CONNECTIONS

ADDRESS
CONNECTION

OUTPUT OR
INPUT/OUTPUT
CONNECTION

• RAM memory generally has at least one CS or S input and ROM at least one CE.
• If the CE, CS, S input is active the memory device perform the read or write.
• If it is inactive the memory device cannot perform read or write operation.
• If more than one CS connection is present, all most be active to perform read or

write data.
• Control connections: A ROM usually has only one control input, while a RAM

often has one or two control inputs.
• The control input most often found on the ROM is the output enable (OE) or

gate (G), this allows data to flow out of the output data pins of the ROM.
• If OE and the selected input are both active, then the output is enable, if OE is

inactive, the output is disabled at its high-impedance state.
• The OE connection enables and disables a set of three-state buffer located within

the memory device and must be active to read data.
• A RAM memory device has either one or two control inputs. If there is one

control input it is often called R/W.
• This pin selects a read operation or a write operation only if the device is selected

by the selection input (CS).
• If the RAM has two control inputs, they are usually labeled WE or W and OE or

G.
• (WE) write enable must be active to perform a memory write operation and OE

must be active to perform a memory read operation.
• When these two controls WE and OE are present, they must never be active at the

same time.
• The ROM read only memory permanently stores programs and data and data was

always present, even when power is disconnected.
• It is also called as nonvolatile memory.
• EPROM (erasable programmable read only memory) is also erasable if exposed

to high intensity ultraviolet light for about 20 minutes or less, depending upon the
type of EPROM.

• We have PROM (programmable read only memory)
• RMM (read mostly memory) is also called the flash memory.
• The flash memory is also called as an EEPROM (electrically erasable

programmable ROM), EAROM (electrically alterable ROM), or a NOVROM
(nonvolatile ROM).

• These memory devices are electrically erasable in the system, but require more
time to erase than a normal RAM.

• EPROM contains the series of 27XXX contains the following part numbers :
2704(512 * 8), 2708(1K * 8), 2716(2K * 8), 2732(4K * 8), 2764(8K * 8),
27128(16K * 8) etc..

• Each of these parts contains address pins, eight data connections, one or more
chip selection inputs (CE) and an output enable pin (OE).

• This device contains 11 address inputs and 8 data outputs.
• If both the pin connection CE and OE are at logic 0, data will appear on the output

connection . If both the pins are not at logic 0, the data output connections
remains at their high impedance or off state.

• To read data from the EPROM Vpp pin must be placed at a logic 1.

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15

PIN CONFIGURATION OF 2716 EPROM

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND O3

O4

O5

O6

O7

PD/PGM

A10

CS

Vpp

A9

A8

Vcc

A0 –A10

PD/PGM

C

O0-O7 OUT

CHIP

POWER DOWN PROGRAM /

ADDRESSES

PIN

• Static RAM memory device retain data for as long as DC power is applied.

Because no special action is required to retain stored data, these devices are called
as static memory. They are also called volatile memory because they will not
retain data without power.

• The main difference between a ROM and RAM is that a RAM is written under
normal operation, while ROM is programmed outside the computer and is only
normally read.

• The SRAM stores temporary data and is used when the size of read/write memory
is relatively small.

Vcc

Vpp
GND

CHIP SELECT
POWER DOWN
AND PROGRAM
LOGIC

Y
DECODER

X
DECODER

16,386 BIT
CELL
MATRIX

Y-GATING

OUTPUT
BUFFERS

DATA OUTPUTS
O0 – O7

A0 - A10
ADDRESS
INPUTS

PD / PGM

CS

BLOCK DIAGRAM

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15

PIN CONFIGURATION OF TMS
4016 SRAM

A 7
A 6

A 5
A 4
A 3
A 2
A 1
A 0

DQ 1
DQ 2
DQ 3
Vss DQ 4

DQ 5

DQ 6

DQ 7

DQ 8

S

A 10

G

W

A 9

A 8

V CC

• The control inputs of this RAM are slightly different from those presented earlier.

The OE pin is labeled G, the CS pin S and the WE pin W.
• This 4016 SRAM device has 11 address inputs and 8 data input/output

connections.

Static RAM Interfacing

• The semiconductor RAM are broadly two types – static RAM and dynamic RAM.
• The semiconductor memories are organised as two dimensional arrays of memory

locations.
• For example 4K * 8 or 4K byte memory contains 4096 locations, where each

locations contains 8-bit data and only one of the 4096 locations can be selected at
a time. Once a location is selected all the bits in it are accessible using a group of
conductors called Data bus.

• For addressing the 4K bytes of memory, 12 address lines are required.
• In general to address a memory location out of N memory locations, we will

require at least n bits of address, i.e. n address lines where n = Log2 N.
• Thus if the microprocessor has n address lines, then it is able to address at the

most N locations of memory, where 2n=N. If out of N locations only P memory
locations are to be interfaced, then the least significant p address lines out of the
available n lines can be directly connected from the microprocessor to the

A 0 – A 10
_

W

S

DQ 0
_ DQ 8

DATA IN /
DATA OUT

CHIP SELECT

WRITE ENABLE

ADDRESSES

PIN NAMES

G
OUT PUT
ENABLE

Vss GROUND

Vcc + 5 V
SUPPLY

memory chip while the remaining (n-p) higher order address lines may be used
for address decoding as inputs to the chip selection logic.

• The memory address depends upon the hardware circuit used for decoding the
chip select (CS). The output of the decoding circuit is connected with the CS pin
of the memory chip.

• The general procedure of static memory interfacing with 8086 is briefly described
as follows:

1. Arrange the available memory chip so as to obtain 16- bit data bus width. The
upper 8-bit bank is called as odd address memory bank and the lower 8-bit bank is
called as even address memory bank.

2. Connect available memory address lines of memory chip with those of the
microprocessor and also connect the memory RD and WR inputs to the
corresponding processor control signals. Connect the 16-bit data bus of the
memory bank with that of the microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE and A0 are used for
decoding the required chip select signals for the odd and even memory banks. The
CS of memory is derived from the o/p of the decoding circuit.

• As a good and efficient interfacing practice, the address map of the system should

be continuous as far as possible, i.e. there should not be no windows in the map
and no fold back space should be allowed.

• A memory location should have a single address corresponding to it, i.e. absolute
decoding should be preferred and minimum hardware should be used for
decoding.

Dynamic RAM

• Whenever a large capacity memory is required in a microcomputer system, the
memory subsystem is generally designed using dynamic RAM because there are
various advantages of dynamic RAM.

• E.g. higher packing density, lower cost and less power consumption. A typical
static RAM cell may require six transistors while the dynamic RAM cell requires
only a transistors along with a capacitor. Hence it is possible to obtain higher
packaging density and hence low cost units are available.

• The basic dynamic RAM cell uses a capacitor to store the charge as a
representation of data. This capacitor is manufactured as a diode that is reverse-
biased so that the storage capacitance comes into the picture. This storage
capacitance is utilized for storing the charge representation of data but the
reverse-biased diode has leakage current that tends to discharge the capacitor
giving rise to the possibility of data loss. To avoid this possible data loss, the data
stored in a dynamic RAM cell must be refreshed after a fixed time interval
regularly. The process of refreshing the data in RAM is called as Refresh cycle.

• The refresh activity is similar to reading the data from each and every cell of
memory, independent of the requirement of microprocessor. During this refresh

period all other operations related to the memory subsystem are suspended. Hence
the refresh activity causes loss of time, resulting in reduce system performance.

• However keeping in view the advantages of dynamic RAM, like low power
consumption, high packaging density and low cost, most of the advanced
computing system are designed using dynamic RAM, at the cost of operating
speed.

• A dedicated hardware chip called as dynamic RAM controller is the most
important part of the interfacing circuit.

• The Refresh cycle is different from the memory read cycle in the following
aspects.

1. The memory address is not provided by the CPU address bus, rather it is
generated by a refresh mechanism counter called as refresh counter.

2. Unlike memory read cycle, more than one memory chip may be enabled at a time
so as to reduce the number of total memory refresh cycles.

3. The data enable control of the selected memory chip is deactivated, and data is
not allowed to appear on the system data bus during refresh, as more than one
memory units are refreshed simultaneously. This is to avoid the data from the
different chips to appear on the bus simultaneously.

4. Memory read is either a processor initiated or an external bus master initiated and
carried out by the refresh mechanism.

• Dynamic RAM is available in units of several kilobits to megabits of memory.

This memory is arranged internally in a two dimensional matrix array so that it
will have n rows and m columns. The row address n and column address m are
important for the refreshing operation.

• For example, a typical 4K bit dynamic RAM chip has an internally arranged bit
array of dimension 64 * 64 , i.e. 64 rows and 64 columns. The row address and
column address will require 6 bits each. These 6 bits for each row address and
column address will be generated by the refresh counter, during the refresh cycles.

• A complete row of 64 cells is refreshed at a time to minimizes the refreshing
time. Thus the refresh counter needs to generate only row addresses. The row
address are multiplexed, over lower order address lines.

• The refresh signals act to control the multiplexer, i.e. when refresh cycle is in
process the refresh counter puts the row address over the address bus for
refreshing. Otherwise, the address bus of the processor is connected to the address
bus of DRAM, during normal processor initiated activities.

• A timer, called refresh timer, derives a pulse for refreshing action after each
refresh interval.

• Refresh interval can be qualitatively defined as the time for which a dynamic
RAM cell can hold data charge level practically constant, i.e. no data loss takes
place.

• Suppose the typical dynamic RAM chip has 64 rows, then each row should be
refreshed after each refresh interval or in other words, all the 64 rows are to
refreshed in a single refresh interval.

• This refresh interval depends upon the manufacturing technology of the dynamic
RAM cell. It may range anywhere from 1ms to 3ms.

• Let us consider 2ms as a typical refresh time interval. Hence, the frequency of the
refresh pulses will be calculated as follows:

• Refresh Time (per row) tr = (2 * 10 -3) / 64.
• Refresh Frequency fr = 64 / (2 * 10 -3) = 32 * 103 Hz.
• The following block diagram explains the refreshing logic and 8086 interfacing

with dynamic RAM.
• Each chip is of 16K * 1-bit dynamic RAM cell array. The system contains two

16K byte dynamic RAM units. All the address and data lines are assumed to be
available from an 8086 microprocessor system.

• The OE pin controls output data buffer of the memory chips. The CE pins are
active high chip selects of memory chips. The refresh cycle starts, if the refresh
output of the refresh timer goes high, OE and CE also tend to go high.

• The high CE enables the memory chip for refreshing, while high OE prevents the
data from appearing on the data bus, as discussed in memory refresh cycle. The
16K * 1-bit dynamic RAM has an internal array of 128*128 cells, requiring 7 bits
for row address. The lower order seven lines A0-A6 are multiplexed with the
refresh counter output A10-A16.

Ref. Add
Counter

Refresh
Refresh
timer

To transreceivers
A15 A14

CE1 CE2
Address
Deciding logic

7 bit
bus
MUX

A7 – A13

CE1

CE2

A0-A6

OE CE OE CE OE CE OE CE OE CE OE CE OE CE OE CE

16K*1 16K*1 16K*1 16K*
1

16K*1 16K*1 16K*1

16K*1 16K*1 16K*1 16K*1 16K*1 16K*1 16K*1 16K*

16K*1

OE CE OE CE CE OE CE OE CE OE CE OE CE CE OE OE

A7 – A13

A6 – A0

A7 – A13

A6 – A0

Ar0
–
Ar6

Dynamic RAM Refreshing Logic

• The pin assignment for 2164 dynamic RAM is as in above fig.

ADDRESS

+12 V CLK

B0

X0/OP2 X1/CLK
Vcc

16K/64K

OUT7 – OUT0
Address O/P

RAS1 – RAS0

CAS

WE
XACK SACK

WR
RD

PCS

Refrq.

AL0 -AL7

AH0 -AH7

External refresh request

Protected Chip Select

Read request
Write request

Bank Select

Write enable

System Acknowledge Transfer Acknowledge

Fig : Dynamic RAM controller

8203

WE

CAS

RAS

A0 – A7

Vcc +5V

Din

Dout

2164

Fig : 1- bit Dynamic RAM

• The RAS and CAS are row and column address strobes and are driven by the
dynamic RAM controller outputs. A0 –A7 lines are the row or column address
lines, driven by the OUT0 – OUT7 outputs of the controller. The WE pin
indicates memory write cycles. The DIN and DOUT pins are data pins for write
and read operations respectively.

• In practical circuits, the refreshing logic is integrated inside dynamic RAM
controller chips like 8203, 8202, 8207 etc.

• Intel’s 8203 is a dynamic RAM controller that support 16K or 64K dynamic
RAM chip. This selection is done using pin 16K/64K. If it is high, the 8203 is
configured to control 16K dynamic RAM, else it controls 64K dynamic RAM.
The address inputs of 8203 controller accepts address lines A1 to A16 on lines
AL0-AL7 and AH0-AH7.

• The A0 lines is used to select the even or odd bank. The RD and WR signals
decode whether the cycle is a memory read or memory write cycle and are
accepted as inputs to 8203 from the microprocessor.

• The WE signal specifies the memory write cycle and is not output from 8203 that
drives the WE input of dynamic RAM memory chip. The OUT0 – OUT7 set of
eight pins is an 8-bit output bus that carries multiplexed row and column
addresses are derived from the address lines A1-A16 accepted by the controller on
its inputs AL0-AL7 and AH0-AH7.

• An external crystal may be applied between X0 and X1 pins, otherwise with the
OP2 pin at +12V, a clock signal may be applied at pin CLK.

• The PCS pin accepts the chip select signal derived by an address decoder. The
REFREQ pin is used whenever the memory refresh cycle is to be initiated by an
external signal.

• The XACK signal indicates that data is available during a read cycle or it has
been written if it is a write cycle. It can be used as a strobe for data latches or as a
ready signal to the processor.

• The SACK output signal marks the beginning of a memory access cycle.
• If a memory request is made during a memory refresh cycle, the SACK signal is

delayed till the starring of memory read or write cycle.
• Following fig shows the 8203 can be used to control a 256K bytes memory

subsystem for a maximum mode 8086 microprocessor system.
• This design assumes that data and address busses are inverted and latched, hence

the inverting buffers and inverting latches are used (8283-inverting buffer and
8287- inverting latch).

• Most of the functions of 8208 and 8203 are similar but 8208 can be used to

refresh the dynamic RAM using DMA approach. The memory system is divided
into even and odd banks of 256K bytes each, as required for an 8086 system.

• The inverted AACK output of 8208 latches the A0 and BHE signals required for
selecting the banks. If the latched bank select signal and the WE/PCLK output of
8208 both become low. It indicates a write operation to the respective bank.

PIO 8255

• The parallel input-output port chip 8255 is also called as programmable
peripheral input-output port. The Intel’s 8255 is designed for use with Intel’s 8-
bit, 16-bit and higher capability microprocessors. It has 24 input/output lines
which may be individually programmed in two groups of twelve lines each, or
three groups of eight lines. The two groups of I/O pins are named as Group A and
Group B. Each of these two groups contains a subgroup of eight I/O lines called
as 8-bit port and another subgroup of four lines or a 4-bit port. Thus Group A
contains an 8-bit port A along with a 4-bit port. C upper.

• The port A lines are identified by symbols PA0-PA7 while the port C lines are
identified as PC4-PC7. Similarly, Group B contains an 8-bit port B, containing
lines PB0-PB7 and a 4-bit port C with lower bits PC0- PC3. The port C upper and
port C lower can be used in combination as an 8-bit port C.

XACK

XACK

XACK

OTHER
READY
INPUTS

8284A

RDY

AD0 –
AD15

AD0 – AD15
A16 – A19

BHE

8086

S0-S2

8288
BUS
CTRLR

ALE

8267
XCEIVER

8283
LATCH

D0-D15

A0-A19

A0

BHE

WRITE

READ

System
Bus

8288
XCIEVER

8205
DECODER

8267
XCIEVER

DATA
LATCH
CS

8267
XCIEVER

CS
WR

DATA

D0-D15

MEMORY
2164 256K
BYTES

D0 D1

16

16

A1-
A16

A12-
A19

A0

RD

WR
BHE

D
A
T
A

ADR-
AD

RD

WR
PCS

ADDR
IN

XACK SACK

8203

WE

ADDR
OUT

CAS

High
Byte
Write

Fig : Interfacing 2164 Using 8203

• Both the port C are assigned the same address. Thus one may have either three 8-
bit I/O ports or two 8-bit and two 4-bit ports from 8255. All of these ports can
function independently either as input or as output ports. This can be achieved by
programming the bits of an internal register of 8255 called as control word
register (CWR).

• The internal block diagram and the pin configuration of 8255 are shown in fig.
• The 8-bit data bus buffer is controlled by the read/write control logic. The

read/write control logic manages all of the internal and external transfers of both
data and control words.

• RD, WR, A1, A0 and RESET are the inputs provided by the microprocessor to
the READ/ WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is
used to interface the 8255 internal data bus with the external system data bus.

• This buffer receives or transmits data upon the execution of input or output
instructions by the microprocessor. The control words or status information is also
transferred through the buffer.

• The signal description of 8255 are briefly presented as follows :
• PA7-PA0: These are eight port A lines that acts as either latched output or

buffered input lines depending upon the control word loaded into the control word
register.

• PC7-PC4 : Upper nibble of port C lines. They may act as either output latches or
input buffers lines.

• This port also can be used for generation of handshake lines in mode 1 or mode
2.

• PC3-PC0 : These are the lower port C lines, other details are the same as PC7-
PC4 lines.

• PB0-PB7 : These are the eight port B lines which are used as latched output lines
or buffered input lines in the same way as port A.

• RD : This is the input line driven by the microprocessor and should be low to
indicate read operation to 8255.

• WR : This is an input line driven by the microprocessor. A low on this line
indicates write operation.

• CS : This is a chip select line. If this line goes low, it enables the 8255 to respond
to RD and WR signals, otherwise RD and WR signal are neglected.

• A1-A0 : These are the address input lines and are driven by the microprocessor.
These lines A1-A0 with RD, WR and CS from the following operations for 8255.
These address lines are used for addressing any one of the four registers, i.e. three
ports and a control word register as given in table below.

• In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus,
the A0 and A1 pins of 8255 are connected with A1 and A2 respectively.

• D0-D7 : These are the data bus lines those carry data or control word to/from the

microprocessor.
• RESET : A logic high on this line clears the control word register of 8255. All

ports are set as input ports by default after reset.

Block Diagram of 8255 (Architecture)

• It has a 40 pins of 4 groups.
1. Data bus buffer
2. Read Write control logic
3. Group A and Group B controls
4. Port A, B and C
• Data bus buffer: This is a tristate bidirectional buffer used to interface the 8255 to

system databus. Data is transmitted or received by the buffer on execution of
input or output instruction by the CPU.

• Control word and status information are also transferred through this unit.
• Read/Write control logic: This unit accepts control signals (RD, WR) and also

inputs from address bus and issues commands to individual group of control
blocks (Group A, Group B).

• It has the following pins.
a) CS – Chipselect : A low on this PIN enables the communication between CPU

and 8255.

Input (Read) cycle RD WR CS A1 A0

Port A to Data bus
Port B to Data bus
Port C to Data bus
CWR to Data bus

0
1
0

1 0 0 0
0
0
0 1 1

1
1
1
1

0 0
0
0

Output (Write) cycle RD WR CS A1 A0

Data bus to Port A
Data bus to Port B
Data bus to Port C
Data bus to CWR

0
1
0

0 0 0
0
0
0 1 1

1
0 0

0
0

1
1
1
1

Function RD WR CS A1 A0

Data bus tristated
Data bus tristated

X
X

X 1 X
1 X 0

X
1

 Control Word Register

b) RD (Read) – A low on this pin enables the CPU to read the data in the ports or the
status word through data bus buffer.

c) WR (Write) : A low on this pin, the CPU can write data on to the ports or on to
the control register through the data bus buffer.

d) RESET: A high on this pin clears the control register and all ports are set to the
input mode

e) A0 and A1 (Address pins): These pins in conjunction with RD and WR pins
control the selection of one of the 3 ports.

• Group A and Group B controls : These block receive control from the CPU and
issues commands to their respective ports.

• Group A - PA and PCU (PC7 –PC4)
• Group B - PCL (PC3 – PC0)
• Control word register can only be written into no read operation of the CW

register is allowed.
• a) Port A: This has an 8 bit latched/buffered O/P and 8 bit input latch. It can be

programmed in 3 modes – mode 0, mode 1, mode 2.
 b) Port B: This has an 8 bit latched / buffered O/P and 8 bit input latch. It can be
programmed in mode 0, mode1.
 c) Port C : This has an 8 bit latched input buffer and 8 bit out put latched/buffer.
This port can be divided into two 4 bit ports and can be used as control signals for port A
and port B. it can be programmed in mode 0.

Modes of Operation of 8255

• These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset

mode (BSR).
• In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR mode

only port C (PC0-PC7) can be used to set or reset its individual port bits.
• Under the I/O mode of operation, further there are three modes of operation of

8255, so as to support different types of applications, mode 0, mode 1 and mode
2.

• BSR Mode: In this mode any of the 8-bits of port C can be set or reset depending
on D0 of the control word. The bit to be set or reset is selected by bit select flags
D3, D2 and D1 of the CWR as given in table.

• I/O Modes :
 a) Mode 0 (Basic I/O mode): This mode is also called as basic input/output
mode. This mode provides simple input and output capabilities using each of the three
ports. Data can be simply read from and written to the input and output ports
respectively, after appropriate initialisation.

• The salient features of this mode are as listed below:
1. Two 8-bit ports (port A and port B)and two 4-bit ports (port C upper and lower)

are available. The two 4-bit ports can be combinedly used as a third 8-bit port.
2. Any port can be used as an input or output port.
3. Output ports are latched. Input ports are not latched.
4. A maximum of four ports are available so that overall 16 I/O configuration are

possible.

D3 D2 D1 Selected bits of port C

0

1

D0 0 0
0 0
0 0 1

1

0 1 1
1
1

0 0
0 1

1 1 0
1 1

D1
D2
D3
D4
D5
D6
D7

BSR Mode : CWR Format

8
2
5
5

8
2
5
5

PA

PCU

PCL

PB

PA

PCU

PCL

PB

PA6 – PA7

PC4 – PC7

PC0-PC3

PB0 – PB7

All Output Port A and Port C acting as
O/P. Port B acting as I/P

PA

PC

PB0 – PB7

Mode 0

• All these modes can be selected by programming a register internal to 8255
known as CWR.

• The control word register has two formats. The first format is valid for I/O modes
of operation, i.e. modes 0, mode 1 and mode 2 while the second format is valid
for bit set/reset (BSR) mode of operation. These formats are shown in following
fig.

1 X X X

0-for BSR mode Bit select flags
0- Reset
1- Set

I/O Mode Control Word Register Format and
 BSR Mode Control Word Register Format

D3, D2, D1 are from 000 to 111 for bits PC0 TO PC7

20
19
18
17
16
15
14
13
12
11
10
 9
 8
7

 6
 5
4

 3
 2
 1

21
22
23
24
25
26
27
28
29
30
31

32

 33
34

35

 36
37

 38
 39
40

PB3

PB4

PB5

PB6

PB7

Vcc
D7

D6

D5

D4

D3

D2

D1

D0

Reset
WR
PA7

PA6

PA5

PA4

PB2

PB1

PB0

PC3

PC2

PC1

PC0

PC4

PC5

PC6

PC7

A0

A1

GND

CS
RD

PA0

PA1

PA2

PA3

8255A

8255A Pin Configuration

8255A

D0-D7

CS
RESET

A0

A1

RD

WR GND

Vcc

PB0-PB7

PC0-PC3

PC4-PC7

PA0-PA7

Signals of 8255

Block Diagram of 8255

D0-D7 Data
bus

1

READ/
WRITE
Control
Logic

RD
WR

A0

A1

RESET

CS

Group B
control

Group A
control

Group A
Port A(8)

Group A
Port C
upper(4)

Group B
Port C
Lower(4)

Group B
Port B(8)

2

3 4

8 bit int data bus

PB7-PB0

PC0-PC3

PC7-PC4

PA0-PA7

Control Word Format of 8255

Group - B

PCL

PB

Mode
Select

1 Input
0 Output
1 Input
0 Output

0 mode- 0
1 mode- 1

D0 D1 D2D3D4D6 D5 D7

Mode for
Port A

PA PC U Mode
for PB

PB PC L

Mode
Select
of PA

00 – mode 0
01 – mode 1
10 – mode 2

PA
1 Input
0 Output

Group - A

PC u 1 Input
0 Output

Mode Set flag
1- active
0- BSR mode

b) Mode 1: (Strobed input/output mode) In this mode the handshaking control the input
and output action of the specified port. Port C lines PC0-PC2, provide strobe or
handshake lines for port B. This group which includes port B and PC0-PC2 is called as
group B for Strobed data input/output. Port C lines PC3-PC5 provide strobe lines for port
A. This group including port A and PC3-PC5 from group A. Thus port C is utilized for
generating handshake signals. The salient features of mode 1 are listed as follows:

1. Two groups – group A and group B are available for strobed data transfer.
2. Each group contains one 8-bit data I/O port and one 4-bit control/data port.
3. The 8-bit data port can be either used as input and output port. The inputs and

outputs both are latched.
4. Out of 8-bit port C, PC0-PC2 are used to generate control signals for port B and

PC3-PC5 are used to generate control signals for port A. the lines PC6, PC7 may
be used as independent data lines.

• The control signals for both the groups in input and output modes are explained as
follows:

Input control signal definitions (mode 1):
• STB(Strobe input) – If this lines falls to logic low level, the data available at 8-

bit input port is loaded into input latches.
• IBF (Input buffer full) – If this signal rises to logic 1, it indicates that data has

been loaded into latches, i.e. it works as an acknowledgement. IBF is set by a low
on STB and is reset by the rising edge of RD input.

• INTR (Interrupt request) – This active high output signal can be used to
interrupt the CPU whenever an input device requests the service. INTR is set by a
high STB pin and a high at IBF pin. INTE is an internal flag that can be controlled
by the bit set/reset mode of either PC4(INTEA) or PC2(INTEB) as shown in fig.

• INTR is reset by a falling edge of RD input. Thus an external input device can be
request the service of the processor by putting the data on the bus and sending the
strobe signal.

Output control signal definitions (mode 1) :
• OBF (Output buffer full) – This status signal, whenever falls to low, indicates

that CPU has written data to the specified output port. The OBF flip-flop will be
set by a rising edge of WR signal and reset by a low going edge at the ACK input.

• ACK (Acknowledge input) – ACK signal acts as an acknowledgement to be
given by an output device. ACK signal, whenever low, informs the CPU that the
data transferred by the CPU to the output device through the port is received by
the output device.

• INTR (Interrupt request) – Thus an output signal that can be used to interrupt
the CPU when an output device acknowledges the data received from the CPU.
INTR is set when ACK, OBF and INTE are 1. It is reset by a falling edge on WR
input. The INTEA and INTEB flags are controlled by the bit set-reset mode of
PC6 and PC2 respectively.

D0D1 D2 D3 D4 D5 D6 D7

1 1 1/0 0 0 X X X

Mode 1 Control Word Group A
I/P

Mode 1 Control Word Group B
I/P

PB0 – PB7

INTEB PC2

PC1

PC0 INTR
A

IBFB

STBB

I/O

INTRA

IBFA

STBA
INTEA

PA0 – PA7

RD

PC3

PC5

PC4

PC6 – PC7

1 - Input
0 - Output

For PC6 – PC7

D0 D1 D2 D3D4D5D6D7

1 1 1 X X X X X

RD

Input control signal definitions in Mode
1

DATA
from

RD

INTR

STB

IBF

Mode 1 Strobed Input Data Transfer

Data OP to
Port

ACK

INTR

OBF

WR

Mode 1 Strobed Data Output

• Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is also
called as strobed bidirectional I/O. This mode of operation provides 8255 with an
additional features for communicating with a peripheral device on an 8-bit data
bus. Handshaking signals are provided to maintain proper data flow and
synchronization between the data transmitter and receiver. The interrupt
generation and other functions are similar to mode 1.

• In this mode, 8255 is a bidirectional 8-bit port with handshake signals. The Rd
and WR signals decide whether the 8255 is going to operate as an input port or
output port.

• The Salient features of Mode 2 of 8255 are listed as follows:
1. The single 8-bit port in group A is available.
2. The 8-bit port is bidirectional and additionally a 5-bit control port is available.
3. Three I/O lines are available at port C.(PC2 – PC0)
4. Inputs and outputs are both latched.
5. The 5-bit control port C (PC3-PC7) is used for generating / accepting handshake

signals for the 8-bit data transfer on port A.

• Control signal definitions in mode 2:
• INTR – (Interrupt request) As in mode 1, this control signal is active high and is

used to interrupt the microprocessor to ask for transfer of the next data byte
to/from it. This signal is used for input (read) as well as output (write)
operations.

D0D1 D2 D3 D4 D5 D6 D7

1 1 1/0 0 0 X X X

Mode 1 Control Word Group A Mode 1 Control Word Group B

PB0 –
PB7

INTEB PC1

PC2

PC0 INTRB

ACKB

OBF

I/O
INTRA

ACKA

OBF
A

INTEA

PA0 – PA7

WR

PC3

PC6

PC7

PC4 – PC5

1 - Input
0 - Output

For PC4 – PC5

D0 D1 D2 D3D4D5D6D7

1 1 0 X X X X X

Output control signal definitions Mode 1

• Control Signals for Output operations:
• OBF (Output buffer full) – This signal, when falls to low level, indicates that the

CPU has written data to port A.
• ACK (Acknowledge) This control input, when falls to logic low level,

acknowledges that the previous data byte is received by the destination and next
byte may be sent by the processor. This signal enables the internal tristate buffers
to send the next data byte on port A.

• INTE1 (A flag associated with OBF) This can be controlled by bit set/reset
mode with PC6.

• Control signals for input operations :
• STB (Strobe input) A low on this line is used to strobe in the data into the input

latches of 8255.
• IBF (Input buffer full) When the data is loaded into input buffer, this signal rises

to logic ‘1’. This can be used as an acknowledge that the data has been received
by the receiver.

• The waveforms in fig show the operation in Mode 2 for output as well as input
port.

• Note: WR must occur before ACK and STB must be activated before RD.

• The following fig shows a schematic diagram containing an 8-bit bidirectional
port, 5-bit control port and the relation of INTR with the control pins. Port B can
either be set to Mode 0 or 1 with port A(Group A) is in Mode 2.

• Mode 2 is not available for port B. The following fig shows the control word.
• The INTR goes high only if either IBF, INTE2, STB and RD go high or OBF,

INTE1, ACK and WR go high. The port C can be read to know the status of the

Data from 8085 Data towards
8255

RD

Data bus

IBF

STB

ACK

INTR

OBF

WR

Mode 2 Bidirectional Data Transfer

peripheral device, in terms of the control signals, using the normal I/O
instructions.

D0D1D2D3D4D5 D6 D7

1 X X X 1 1/0 1/0 1/0

1 - Input
0 - Output

 PC2 – PC0

1/0 mode

Port A
mode 2

Port B mode
0-mode 0
1- mode 1

Port B
1- I/P
0-O/P

Mode 2 control word

8254

• Compatible with All Intel and Most other Microprocessors
• Handles Inputs from DC to 10 MHz
• 8 MHz 8254
• 10 MHz 8254-2
• Status Read-Back Command
• Six Programmable Counter Modes
• Three Independent 16-Bit Counters
• Binary or BCD Counting
• Single a 5V Supply
• Standard Temperature Range
• The Intel 8254 is a counter/timer device designed to solve the common timing

control problems in microcomputer system design.
• It provides three independent 16-bit counters, each capable of handling clock

inputs up to 10 MHz.

WR

RD

PC3

PC7

PC6

PC4

PC5

INTE 1

I/O

IBF

STB

ACK

OBF

INTR

PA0-PA7

INTE 2

3

Mode 2 pins

• All modes are software programmable. The 8254 is a superset of the 8253.
• The 8254 uses HMOS technology and comes in a 24-pin plastic or CERDIP

package.

Figure 1. Pin Configuration

Pin Description

Figure 2. 8254 Block

 Symbol

Pin
No.

Type Name and Function

D7-D0

1 - 8 I/O DATA: Bi-directional three state data bus
lines, connected to system data bus.

CLK 0 9 I CLOCK 0: Clock input of Counter 0.

OUT 0 10 O OUTPUT 0: Output of Counter 0.

GATE 0 11 I GATE 0: Gate input of Counter 0.

GND 12 GROUND: Power supply connection.

VCC 24 POWER: A 5V power supply connection.

WR 23 I
WRITE CONTROL: This input is low during
CPU write operations.

RD 22 I
READ CONTROL: This input is low during
CPU read operations.

Functional Description

• The 8254 is a programmable interval timer/counter designed for use with Intel
microcomputer systems.

• It is a general purpose, multi-timing element that can be treated as an array of I/O
ports in the system software.

• The 8254 solves one of the most common problems in any microcomputer
system, the generation of accurate time delays under software control. Instead of
setting up timing loops in software, the programmer configures the 8254 to match
his requirements and programs one of the counters for the desired delay.

CS 21 I

CHIP SELECT: A low on this input enables the
8254 to respond to RD and WR signals. RD and
WR are ignored otherwise.

A1, A0

20 – 9 I ADDRESS: Used to select one of the three
Counters or the Control Word Register for read
or write operations. Normally connected to the
system address bus.
 A1 A0 Selects
0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Word Register

CLK 2 18 I CLOCK 2: Clock input of Counter 2.

OUT 2 17 O OUT 2: Output of Counter 2.

GATE 2 16 I GATE 2: Gate input of Counter 2.

CLK 1 15 I CLOCK 1: Clock input of Counter 1.

GATE 1 14 I GATE 1: Gate input of Counter 1.

OUT 1 OUT 1 O OUT 1: Output of Counter 1.

• After the desired delay, the 8254 will interrupt the CPU. Software overhead is
minimal and variable length delays can easily be accommodated.

• Some of the other counter/timer functions common to microcomputers which can
be implemented with the 8254 are:

• Real time clock
• Event-counter
• Digital one-shot
• Programmable rate generator
• Square wave generator
• Binary rate multiplier
• Complex waveform generator
• Complex motor controller

Block Diagram

• DATA BUS BUFFER: This 3-state, bi-directional, 8-bit buffer is used to
interface the 8254 to the system bus, see the figure : Block Diagram Showing
Data Bus Buffer and Read/Write Logic Functions.

• READ/WRITE LOGIC : The Read/Write Logic accepts inputs from the system
bus and generates control signals for the other functional blocks of the 8254. A1
and A0 select one of the three counters or the Control Word Register to be read
from/written into.

• A ``low'' on the RD input tells the 8254 that the CPU is reading one of the
counters.

 Figure 3. Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions

• A ``low'' on the WR input tells the 8254 that the CPU is writing either a Control

Word or an initial count. Both RD and WR are qualified by CS; RD and WR are
ignored unless the 8254 has been selected by holding CS low.

• CONTROL WORD REGISTER :The Control Word Register (see Figure 4) is
selected by the Read/Write Logic when A1,A0 = 11. If the CPU then does a write
operation to the 8254, the data is stored in the Control Word Register and is
interpreted as a Control Word used to define the operation of the Counters.

• The Control Word Register can only be written to; status information is available
with the Read-Back Command.

• COUNTER 0, COUNTER 1, COUNTER 2 :These three functional blocks are
identical in operation, so only a single Counter will be described. The internal
block diagram of a single counter is shown in Figure 5.

• The Counters are fully independent. Each Counter may operate in a different
Mode.

• The Control Word Register is shown in the figure; it is not part of the Counter
itself, but its contents determine how the Counter operates.

• The status register, shown in Figure 5, when latched, contains the current contents
of the Control Word Register and status of the output and null count flag. (See
detailed explanation of the Read-Back command.)

• The actual counter is labelled CE (for ``Counting Element''). It is a 16-bit
presettable synchronous down counter. OLM and OLL are two 8-bit latches. OL
stands for ``Output Latch''; the subscripts M and L stand for ``Most significant
byte'' and ``Least significant byte'‘ respectively.

Figure 4. Block Diagram Showing Control Word Register and Counter Functions

• Both are normally referred to as one unit and called just OL. These latches
normally ``follow'‘ the CE, but if a suitable Counter Latch Command is sent to
the 8254, the latches ``latch'' the present count until read by the CPU and then
return to ``following'' the CE.

• One latch at a time is enabled by the counter's Control Logic to drive the internal
bus. This is how the 16-bit Counter communicates over the 8-bit internal bus.
Note that the CE itself cannot be read; whenever you read the count, it is the OL
that is being read.

• Similarly, there are two 8-bit registers called CRM and CRL (for ``Count
Register''). Both are normally referred to as one unit and called just CR.

• When a new count is written to the Counter, the count is stored in the CR and
later transferred to the CE. The Control Logic allows one register at a time to be
loaded from the internal bus. Both bytes are transferred to the CE simultaneously.

• CRM and CRL are cleared when the Counter is programmed. In this way, if the
Counter has been programmed for one byte counts (either most significant byte
only or least significant byte only) the other byte will be zero.

• Note that the CE cannot be written into, whenever a count is written, it is written
into the CR.

• The Control Logic is also shown in the diagram.
• CLK n, GATE n, and OUT n are all connected to the outside world through the

Control Logic.

Figure 5. Internal Block Diagram of a Counter

• 8254 SYSTEM INTERFACE :The 8254 is a component of the Intel
Microcomputer Systems and interfaces in the same manner as all other
peripherals of the family.

• It is treated by the system's software as an array of peripheral I/O ports; three are
counters and the fourth is a control register for MODE programming.

• Basically, the select inputs A0,A1 connect to the A0,A1 address bus signals of the
CPU. The CS can be derived directly from the address bus using a linear select
method. Or it can be connected to the output of a decoder, such as an Intel 8205
for larger systems.

• Programming the 8254 :Counters are programmed by writing a Control Word
and then an initial count.

• The Control Words are written into the Control Word Register, which is selected
when A1,A0 = 11. The Control Word itself specifies which Counter is being
programmed.

• Control Word Format: A1,A0 = 11, CS = 0, RD = 1, WR = 0.

Figure 6. 8254 System Interface

• By contrast, initial counts are written into the Counters, not the Control Word
Register. The A1,A0 inputs are used to select the Counter to be written into. The
format of the initial count is determined by the Control Word used.

• Write Operations: The programming procedure for the 8254 is very flexible.
Only two conventions need to be remembered:

1) For each Counter, the Control Word must be written before the initial count is written.
2) The initial count must follow the count format specified in the Control Word (least
significant byte only, most significant byte only, or least significant byte and then most
significant byte).

• Since the Control Word Register and the three Counters have separate addresses
(selected by the A1,A0 inputs), and each Control Word specifies the Counter it
applies to (SC0,SC1 bits), no special instruction sequence is required.

• Any programming sequence that follows the conventions in Figure 7 is
acceptable.

• A new initial count may be written to a Counter at any time without affecting the
Counter's programmed Mode in any way. Counting will be affected as described
in the Mode definitions. The new count must follow the programmed count
format.

• If a Counter is programmed to read/write two-byte counts, the following
precaution applies: A program must not transfer control between writing the first
and second byte to another routine which also writes into that same Counter.
Otherwise, the Counter will be loaded with an incorrect count.

Figure 7. Control Word Format

NOTE: Don't care bits (X) should be 0 to insure compatibility with future Intel products.

• Read Operations: It is often desirable to read the value of a Counter without

disturbing the count in progress. This is easily done in the 8254.
• There are three possible methods for reading the counters: a simple read

operation, the Counter Latch Command, and the Read-Back Command.
• Each is explained below. The first method is to perform a simple read operation.

To read the Counter, which is selected with the A1, A0 inputs, the CLK input of
the selected Counter must be inhibited by using either the GATE input or external
logic.

• Otherwise, the count may be in the process of changing when it is read, giving an
undefined result.

• COUNTER LATCH COMMAND: The second method uses the ``Counter
Latch Command''.

• Like a Control Word, this command is written to the Control Word Register,
which is selected when A1,A0 = 11. Also like a Control Word, the SC0, SC1 bits
select one of the three Counters, but two other bits, D5 and D4, distinguish this
command from a Control Word.

• The selected Counter's output latch (OL) latches the count at the time the Counter
Latch Command is received. This count is held in the latch until it is read by the
CPU (or until the Counter is reprogrammed).

Figure 8. A Few Possible Programming Sequences

• The count is then unlatched automatically and the OL returns to ``following'' the

counting element (CE).
• This allows reading the contents of the Counters ``on the fly'' without affecting

counting in progress.
• Multiple Counter Latch Commands may be used to latch more than one Counter.

Each latched Counter's OL holds its count until it is read.
• Counter Latch Commands do not affect the programmed Mode of the Counter in

any way.
• If a Counter is latched and then, some time later, latched again before the count is

read, the second Counter Latch Command is ignored. The count read will be the
count at the time the first Counter Latch Command was issued.

• With either method, the count must be read according to the programmed format;
specifically, if the Counter is programmed for two byte counts, two bytes must be
read. The two bytes do not have to be read one right after the other, read or write
or programming operations of other Counters may be inserted between them.

Figure 9. Counter Latching Command Format

• Another feature of the 8254 is that reads and writes of the same Counter may be
interleaved.

• Example: If the Counter is programmed for two byte counts, the following
sequence is valid.

1) Read least significant byte.
2) Write new least significant byte.
3) Read most significant byte.
4) Write new most significant byte.
• If a Counter is programmed to read/write two-byte counts, the following

precaution applies: A program must not transfer control between reading the first
and second byte to another routine which also reads from that same Counter.
Otherwise, an incorrect count will be read.

• READ-BACK COMMAND: The third method uses the Read-Back Command.
This command allows the user to check the count value, programmed Mode, and
current states of the OUT pin and Null Count flag of the selected counter (s).

• The command is written into the Control Word Register and has the format shown
in Figure 10. The command applies to the counters selected by setting their
corresponding bits D3, D2, D1 = 1.

• The read-back command may be used to latch multiple counter output latches
(OL) by setting the COUNT bit D5 = 0 and selecting the desired counter (s).
This single command is functionally equivalent to several counter latch
commands, one for each counter latched.

• Each counter's latched count is held until it is read (or the counter is

reprogrammed).
• The counter is automatically unlatched when read, but other counters remain

latched until they are read. If multiple count read-back commands are issued to
the same counter without reading the count, all but the first are ignored; i.e., the
count which will be read is the count at the time the first read-back command was
issued.

• The read-back command may also be used to latch status information of selected
counter (s) by setting STATUS bit D4 = 0. Status must be latched to be read;
status of a counter is accessed by a read from that counter.

• The counter status format is shown in Figure 11.
• Bits D5 through D0 contain the counter's programmed Mode exactly as written in

the last Mode Control Word. OUTPUT bit D7 contains the current state of the
OUT pin.

• This allows the user to monitor the counter's output via software, possibly
eliminating some hardware from a system. NULL COUNT bit D6 indicates when
the last count written to the counter register (CR) has been loaded into the
counting element (CE).

• The exact time this happens depends on the Mode of the counter and is described
in the Mode Definitions, but until the count is loaded into the counting element
(CE), it can't be read from the counter.

• If the count is latched or read before this time, the count value will not reflect the

new count just written. The operation of Null Count is shown in Figure 12.
• If multiple status latch operations of the counter (s) are performed without reading

the status, all but the first are ignored; i.e., the status that will be read is the status
of the counter at the time the first status read-back command was issued.

Figure 11. Status Byte

• Both count and status of the selected counter (s) may be latched simultaneously
by setting both COUNT and STATUS bits D5,D4 = 0. This is functionally the
same as issuing two separate read-back commands at once, and the above
discussions apply here also.

• Specifically, if multiple count and/or status read-back commands are issued to the

same counter (s) without any intervening reads, all but the first are ignored. This
is illustrated in Figure 13.

• If both count and status of a counter are latched, the first read operation of that
counter will return latched status, regardless of which was latched first. The next
one or two reads (depending on whether the counter is programmed for one or
two type counts) return latched count. Subsequent reads return unlatched count.

Figure 12. Null Count Operation

Figure 13. Read-Back Command Example

Figure 14. Read/Write Operations Summary

• Mode Definitions :The following are defined for use in describing the operation

of the 8254.
• CLK Pulse: A rising edge, then a falling edge, in that order, of a Counter's CLK

input.
• Trigger: A rising edge of a Counter's GATE input.
• Counter loading: The transfer of a count from the CR to the CE (refer to the

``Functional Description'').

• MODE 0: INTERRUPT ON TERMINAL COUNT :

• Mode 0 is typically used for event counting. After the Control Word is written,

OUT is initially low, and will remain low until the Counter reaches zero.
• OUT then goes high and remains high until a new count or a new Mode 0 Control

Word is written into the Counter.
• GATE = 1 enables counting; GATE = 0 disables counting. GATE has no effect on

OUT.
• After the Control Word and initial count are written to a Counter, the initial count

will be loaded on the next CLK pulse. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not go high until N a 1 CLK pulses
after the initial count is written.

• If a new count is written to the Counter, it will be loaded on the next CLK pulse
and counting will continue from the new count. If a two-byte count is written, the
following happens:

1) Writing the first byte disables counting. OUT is set low immediately (no clock
pulse required).
2) Writing the second byte allows the new count to be loaded on the next CLK pulse.
• This allows the counting sequence to be synchronized by software. Again, OUT

does not go high until Na1 CLK pulses after the new count of N is written.
• If an initial count is written while GATE e 0, it will still be loaded on the next

CLK pulse. When GATE goes high, OUT will go high N CLK pulses later; no
CLK pulse is needed to load the Counter as this has already been done.

Note:
1. Counters are programmed for binary (not BCD) counting and for reading/writing

least significant byte (LSB) only.
2. The counter is always selected (CS always low).
3. CW stands for ``Control Word''; CW = 10 means a control word of 10 HEX is
written to the counter.
4. LSB stands for ``Least Significant Byte'' of count.
5. Numbers below diagrams are count values. The lower number is the least
significant byte. The upper number is the most significant byte. Since the counter is
programmed to read/write LSB only, the most significant byte cannot be
 read. N stands for an undefined count. Vertical lines show transitions between count
values.

• MODE 1: HARDWARE RETRIGGERABLE ONE-SHOT: OUT will be

initially high.
• OUT will go low on the CLK pulse following a trigger to begin the one-shot

pulse, and will remain low until the Counter reaches zero.
• OUT will then go high and remain high until the CLK pulse after the next trigger.
• After writing the Control Word and initial count, the Counter is armed. A trigger

results in loading the Counter and setting OUT low on the next CLK pulse, thus
starting the one-shot pulse. An initial count of N will result in a one-shot pulse N
CLK cycles in duration.

Figure 15. Mode 0

• The one-shot is retriggerable, hence OUT will remain low for N CLK pulses after
any trigger. The one-shot pulse can be repeated without rewriting the same count
into the counter. GATE has no effect on OUT.

• If a new count is written to the Counter during a oneshot pulse, the current one-
shot is not affected unless the counter is retriggered. In that case, the Counter is
loaded with the new count and the oneshot pulse continues until the new count
expires.

• MODE 2: RATE GENERATOR: This Mode functions like a divide-by-N

counter. It is typically used to generate a Real Time Clock interrupt.
• OUT will initially be high. When the initial count has decremented to 1, OUT

goes low for one CLK pulse. OUT then goes high again, the Counter reloads the
initial count and the process is repeated.

• Mode 2 is periodic, the same sequence is repeated indefinitely. For an initial
count of N, the sequence repeats every N CLK cycles.

• GATE = 1 enables counting; GATE = 0 disables counting. If GATE goes low
during an output pulse, OUT is set high immediately.

• A trigger reloads the Counter with the initial count on the next CLK pulse, OUT
goes low N CLK pulses after the trigger. Thus the GATE input can be used to
synchronize the Counter.

• After writing a Control Word and initial count, the Counter will be loaded on the
next CLK pulse. OUT goes low N CLK Pulses after the initial count is written.

• This allows the Counter to be synchronized by software also. Writing a new count
while counting does not affect the current counting sequence.

Figure 16. Mode 1

• If a trigger is received after writing a new count but before the end of the current
period, the Counter will be loaded with the new count on the next CLK pulse and
counting will continue from the new count.

• Otherwise, the new count will be loaded at the end of the current counting cycle.
In mode 2, a COUNT of 1 is illegal.

• MODE 3: SQUARE WAVE MODE :Mode 3 is typically used for Baud rate
generation. Mode 3 is similar to Mode 2 except for the duty cycle of OUT. OUT
will initially be high.

• When half the initial count has expired, OUT goes low for the remainder of the

count. Mode 3 is periodic; the sequence above is repeated indefinitely.
• An initial count of N results in a square wave with a period of N CLK cycles.

GATE = 1 enables counting; GATE = 0 disables counting. If GATE goes low
while OUT is low, OUT is set high immediately; no CLK pulse is required.

• A trigger reloads the Counter with the initial count on the next CLK pulse. Thus
the GATE input can be used to synchronize the Counter.

• After writing a Control Word and initial count, the Counter will be loaded on the
next CLK pulse. This allows the Counter to be synchronized by software also.

• Writing a new count while counting does not affect the current counting
sequence. If a trigger is received after writing a new count but before the end of
the current half-cycle of the square wave, the Counter will be loaded with the new

Figure 17. Mode 2

count on the next CLK pulse and counting will continue from the new count.
Otherwise, the new count will be loaded at the end of the current half-cycle.

• Mode 3:Even counts: OUT is initially high. The initial count is loaded on one
CLK pulse and then is decremented by two on succeeding CLK pulses.

• When the count expires OUT changes value and the Counter is reloaded with the
initial count. The above process is repeated indefinitely.

• Odd counts: OUT is initially high. The initial count minus one (an even number)
is loaded on one CLK pulse and then is decremented by two on succeeding CLK
pulses.

• One CLK pulse after the count expires, OUT goes low and the Counter is

reloaded with the initial count minus one.
• Succeeding CLK pulses decrement the count by two.
• When the count expires, OUT goes high again and the Counter is reloaded with

the initial count minus one. The above process is repeated indefinitely.
• So for odd counts, OUT will be high for (N - 1)/2 counts and low for (N - 1)/2

counts.
• MODE 4: SOFTWARE TRIGGERED STROBE :

Figure 18. Mode 3

• OUT will be initially high. When the initial count expires, OUT will go low for
one CLK pulse and then go high again. The counting sequence is ``triggered'‘ by
writing the initial count.

• GATE = 1 enables counting; GATE = 0 disables counting. GATE has no effect on
OUT. After writing a Control Word and initial count, the Counter will be loaded
on the next CLK pulse.

• This CLK pulse does not decrement the count, so for an initial count of N, OUT
does not strobe low until N + 1 CLK pulses after the initial count is written.

• If a new count is written during counting, it will be loaded on the next CLK pulse
and counting will continue from the new count. If a two-byte count is written, the
following happens:

1) Writing the first byte has no effect on counting.
2) Writing the second byte allows the new count to be loaded on the next CLK pulse.
• This allows the sequence to be ``retriggered'' by software. OUT strobes low N a 1

CLK pulses after the new count of N is written.

Figure 19. Mode 4
• MODE 5: HARDWARE TRIGGERED STROBE (RETRIGGERABLE):

OUT will initially be high. Counting is triggered by a rising edge of GATE. When
the initial count has expired, OUT will go low for one CLK pulse and then go
high again.

• After writing the Control Word and initial count, the counter will not be loaded
until the CLK pulse after a trigger. This CLK pulse does not decrement the count,
so for an initial count of N, OUT does not strobe low until N = 1 CLK pulses
after a trigger.

• A trigger results in the Counter being loaded with the initial count on the next
CLK pulse. The counting sequence is retriggerable. OUT will not strobe low for
N a 1 CLK pulses after any trigger. GATE has no effect on OUT.

• If a new count is written during counting, the current counting sequence will not
be affected. If a trigger occurs after the new count is written but before the current
count expires, the Counter will be loaded with the new count on the next CLK
pulse and counting will continue from there.

• Operation Common to All Modes:
• PROGRAMMING: When a Control Word is written to a Counter, all Control

Logic is immediately reset and OUT goes to a known initial state; no CLK pulses
are required for this.

• GATE: The GATE input is always sampled on the rising edge of CLK. In Modes
0, 2, 3, and 4 the GATE input is level sensitive, and the logic level is sampled on
the rising edge of CLK. In Modes 1, 2, 3, and 5 the GATE input is rising-edge
sensitive.

Figure 20. Mode 5

• In these Modes, a rising edge of GATE (trigger) sets an edge-sensitive flip-flop in
the Counter. This flip-flop is then sampled on the next rising edge of CLK; the
flip-flop is reset immediately after it is sampled. In this way, a trigger will be
detected no matter when it occurs-a high logic level does not have to be
maintained until the next rising edge of CLK.

• Note that in Modes 2 and 3, the GATE input is both edge- and level-sensitive. In
Modes 2 and 3, if a CLK source other than the system clock is used, GATE
should be pulsed immediately following WR of a new count value.

• COUNTER: New counts are loaded and Counters are decremented on the falling

edge of CLK.
• The largest possible initial count is 0, this is equivalent to 216 for binary counting

and 104 for BCD counting. The Counter does not stop when it reaches zero.
• In Modes 0, 1, 4, and 5 the Counter ``wraps around'' to the highest count, either

FFFF hex for binary counting or 9999 for BCD counting, and continues counting.
• Modes 2 and 3 are periodic; the Counter reloads itself with the initial count and

continues counting from there.

Figure 21. Gate Pin Operations Summary

Figure 22. Minimum and Maximum Initial Counts

NOTE: 0 is equivalent to 216 for binary counting and 104 for BCD counting.

8279

• While studying 8255, we have explained the use of 8255 in interfacing keyboards

and displays with 8086. The disadvantages of this method of interfacing keyboard
and display with 8086 is that the processor has to refresh the display and check
the status of the keyboard periodically using polling technique. Thus a
considerable amount of CPU time is wasted, reducing the system operating speed.

• Intel’s 8279 is a general purpose keyboard display controller that simultaneously
drives the display of a system and interfaces a keyboard with the CPU, leaving it
free for its routine task.

Architecture and Signal Descriptions of 8279

• The keyboard display controller chip 8279 provides:
a) a set of four scan lines and eight return lines for interfacing keyboards
b) A set of eight output lines for interfacing display.
• Fig shows the functional block diagram of 8279 followed by its brief description.
• I/O Control and Data Buffers : The I/O control section controls the flow of data

to/from the 8279. The data buffers interface the external bus of the system with
internal bus of 8279.

• The I/O section is enabled only if CS is low. The pins A0, RD and WR select the
command, status or data read/write operations carried out by the CPU with 8279.

• Control and Timing Register and Timing Control : These registers store the
keyboard and display modes and other operating conditions programmed by CPU.
The registers are written with A0=1 and WR=0. The Timing and control unit
controls the basic timings for the operation of the circuit. Scan counter divide
down the operating frequency of 8279 to derive scan keyboard and scan display
frequencies.

• Scan Counter : The scan counter has two modes to scan the key matrix and
refresh the display. In the encoded mode, the counter provides binary count that is
to be externally decoded to provide the scan lines for keyboard and display (Four
externally decoded scan lines may drive upto 16 displays). In the decode scan
mode, the counter internally decodes the least significant 2 bits and provides a
decoded 1 out of 4 scan on SL0-SL3(Four internally decoded scan lines may
drive upto 4 displays). The keyboard and display both are in the same mode at a
time.

• Return Buffers and Keyboard Debounce and Control: This section for a key
closure row wise. If a key closer is detected, the keyboard debounce unit
debounces the key entry (i.e. wait for 10 ms). After the debounce period, if the
key continues to be detected. The code of key is directly transferred to the sensor
RAM along with SHIFT and CONTROL key status.

• FIFO/Sensor RAM and Status Logic: In keyboard or strobed input mode, this
block acts as 8-byte first-in-first-out (FIFO) RAM. Each key code of the pressed
key is entered in the order of the entry and in the mean time read by the CPU, till
the RAM become empty.

• The status logic generates an interrupt after each FIFO read operation till the
FIFO is empty. In scanned sensor matrix mode, this unit acts as sensor RAM.
Each row of the sensor RAM is loaded with the status of the corresponding row of
sensors in the matrix. If a sensor changes its state, the IRQ line goes high to
interrupt the CPU.

• Display Address Registers and Display RAM : The display address register
holds the address of the word currently being written or read by the CPU to or
from the display RAM. The contents of the registers are automatically updated by
8279 to accept the next data entry by CPU.

8279 Internal Architecture

Return

DB0-DB7

DATA
BUFFERS

I/O
CONTROL

INTERNAL 8 BIT DATA BUS

FIFO/SENSOR
RAM STATUS

RD WR

DISPLAY
ADDRESS
REGISTERS

16*8
DISPLAY
RAM

A0CS

CONTROL
AND
TIMING
REGISTERS

8*8 FIFO/
SENSOR
RAM

KEYBOARD
DEBOUNCE
AND
CONTROL

DISPLAY
REGISTERS

TIMING
AND
CONTROL
UNIT

SCAN
COUNTER

BD OUT A0-A3
OUT B0-B3

SL0 – SL3 RL0 – RL7 CNTL/
STB

SHIFT

CLK R
E
S
E

8279

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Vcc
RL1

RL0
CNTL/STB
SHIFT
SL3
SL2

SL1
SL0
OUT B0

OUT B1
OUT B2
OUT B3
OUT A0
OUT A1
OUT A2
OUT A3
BD
CS
A0

RL2

RL3

CLK
IRQ
RL4

RL5
RL6

RL7
RESET

RD
WR
DB0

DB1
DB2
DB3
DB4
DB5
DB6
DB7
Vss

8279 Pin Configuration

• The signal discription of each of the pins of 8279 as follows :
• DB0-DB7 : These are bidirectional data bus lines. The data and command words

to and from the CPU are transferred on these lines.
• CLK : This is a clock input used to generate internal timing required by 8279.
• RESET : This pin is used to reset 8279. A high on this line reset 8279. After

resetting 8279, its in sixteen 8-bit display, left entry encoded scan, 2-key lock out
mode. The clock prescaler is set to 31.

• CS : Chip Select – A low on this line enables 8279 for normal read or write
operations. Other wise, this pin should remain high.

• A0 : A high on this line indicates the transfer of a command or status information.
A low on this line indicates the transfer of data. This is used to select one of the
internal registers of 8279.

• RD, WR (Input/Output) READ/WRITE – These input pins enable the data
buffers to receive or send data over the data bus.

• IRQ : This interrupt output lines goes high when there is a data in the FIFO
sensor RAM. The interrupt lines goes low with each FIFO RAM read operation
but if the FIFO RAM further contains any key-code entry to be read by the CPU,
this pin again goes high to generate an interrupt to the CPU.

• Vss, Vcc : These are the ground and power supply lines for the circuit.
• SL0-SL3-Scan Lines : These lines are used to scan the key board matrix and

display digits. These lines can be programmed as encoded or decoded, using the
mode control register.

Vss

BD

4

KRY DATA

8RL0-7

SHIFT

CLK

RESET

A0

CS

WR

RD

DB0 – DB7

IRQ

8

CNTL/
STB

SL0-3 4
SCAN

OUT A0-A3

OUT B0 – B3

4

Vcc

DISPLAY
DATA

CPU
INTERFACE

8279

• RL0 - RL7 - Return Lines : These are the input lines which are connected to one
terminal of keys, while the other terminal of the keys are connected to the
decoded scan lines. These are normally high, but pulled low when a key is
pressed.

• SHIFT : The status of the shift input lines is stored along with each key code in
FIFO, in scanned keyboard mode. It is pulled up internally to keep it high, till it is
pulled low with a key closure.

• BD – Blank Display : This output pin is used to blank the display during digit
switching or by a blanking closure.

• OUT A0 – OUT A3 and OUT B0 – OUT B3 – These are the output ports for
two 16*4 or 16*8 internal display refresh registers. The data from these lines is
synchronized with the scan lines to scan the display and keyboard. The two 4-bit
ports may also as one 8-bit port.

• CNTL/STB- CONTROL/STROBED I/P Mode : In keyboard mode, this lines is
used as a control input and stored in FIFO on a key closure. The line is a strobed
lines that enters the data into FIFO RAM, in strobed input mode. It has an
interrupt pull up. The lines is pulled down with a key closer.

Modes of Operation of 8279

• The modes of operation of 8279 are as follows :
1. Input (Keyboard) modes.
2. Output (Display) modes.
• Input (Keyboard) Modes : 8279 provides three input modes. These modes are

as follows:
1. Scanned Keyboard Mode : This mode allows a key matrix to be interfaced using

either encoded or decoded scans. In encoded scan, an 8*8 keyboard or in decoded
scan, a 4*8 keyboard can be interfaced. The code of key pressed with SHIFT and
CONTROL status is stored into the FIFO RAM.

2. Scanned Sensor Matrix : In this mode, a sensor array can be interfaced with
8279 using either encoded or decoded scans. With encoded scan 8*8 sensor
matrix or with decoded scan 4*8 sensor matrix can be interfaced. The sensor
codes are stored in the CPU addressable sensor RAM.

3. Strobed input: In this mode, if the control lines goes low, the data on return lines,
is stored in the FIFO byte by byte.

• Output (Display) Modes : 8279 provides two output modes for selecting the
display options. These are discussed briefly.

1. Display Scan : In this mode 8279 provides 8 or 16 character multiplexed displays
those can be organized as dual 4- bit or single 8-bit display units.

2. Display Entry : (right entry or left entry mode) 8279 allows options for data
entry on the displays. The display data is entered for display either from the right
side or from the left side.

Keyboard Modes

i. Scanned Keyboard mode with 2 Key Lockout : In this mode of operation, when
a key is pressed, a debounce logic comes into operation. During the next two
scans, other keys are checked for closure and if no other key is pressed the first
pressed key is identified.

• The key code of the identified key is entered into the FIFO with SHIFT and
CNTL status, provided the FIFO is not full, i.e. it has at least one byte free. If the
FIFO does not have any free byte, naturally the key data will not be entered and
the error flag is set.

• If FIFO has at least one byte free, the above code is entered into it and the 8279
generates an interrupt on IRQ line to the CPU to inform about the previous key
closures. If another key is found closed during the first key, the keycode is entered
in FIFO.

• If the first pressed key is released before the others, the first will be ignored. A
key code is entered to FIFO only once for each valid depression, independent of
other keys pressed along with it, or released before it.

• If two keys are pressed within a debounce cycle (simultaneously), no key is
recognized till one of them remains closed and the other is released. The last key,
that remains depressed is considered as single valid key depression.

ii. Scanned Keyboard with N-Key Rollover : In this mode, each key depression is
treated independently. When a key is pressed, the debounce circuit waits for 2
keyboards scans and then checks whether the key is still depressed. If it is still
depressed, the code is entered in FIFO RAM.

Any number of keys can be pressed simultaneously and recognized in the
order, the keyboard scan recorded them. All the codes of such keys are entered
into FIFO.

In this mode, the first pressed key need not be released before the second
is pressed. All the keys are sensed in the order of their depression, rather in the
order the keyboard scan senses them, and independent of the order of their
release.

iii. Scanned Keyboard Special Error Mode : This mode is valid only under the N-
Key rollover mode. This mode is programmed using end interrupt / error mode set
command. If during a single debounce period (two keyboard scans) two keys are
found pressed , this is considered a simultaneous depression and an error flag is
set.

• This flag, if set, prevents further writing in FIFO but allows the generation of
further interrupts to the CPU for FIFO read. The error flag can be read by reading
the FIFO status word. The error Flag is set by sending normal clear command
with CF = 1.

iv. Sensor Matrix Mode : In the sensor matrix mode, the debounce logic is

inhibited. The 8-byte FIFO RAM now acts as 8 * 8 bit memory matrix. The status
of the sensor switch matrix is fed directly to sensor RAM matrix. Thus the sensor
RAM bits contains the row-wise and column wise status of the sensors in the
sensor matrix.

• The IRQ line goes high, if any change in sensor value is detected at the end of a
sensor matrix scan or the sensor RAM has a previous entry to be read by the CPU.
The IRQ line is reset by the first data read operation, if AI = 0, otherwise, by
issuing the end interrupt command. AI is a bit in read sensor RAM word.

Display Modes

• There are various options of data display. For example, the command number of
characters can be 8 or 16, with each character organised as single 8-bit or dual 4-
bit codes. Similarly there are two display formats.

• The first one is known as left entry mode or type writer mode, since in a type
writer the first character typed appears at the left-most position, while the
subsequent characters appear successively to the right of the first one. The other
display format is known as right entry mode, or calculator mode, since in a
calculator the first character entered appears at the rightmost position and this
character is shifted one position left when the next characters is entered.

• Thus all the previously entered characters are shifted left by one position when a
new characters is entered.

i. Left Entry Mode : In the left entry mode, the data is entered from left side of the
display unit. Address 0 of the display RAM contains the leftmost display
characters and address 15 of the RAM contains the right most display characters.
It is just like writing in our address is automatically updated with successive reads
or writes. The first entry is displayed on the leftmost display and the sixteenth
entry on the rightmost display. The seventeenth entry is again displayed at the
leftmost display position.

ii. Right Entry Mode : In this right entry mode, the first entry to be displayed is
entered on the rightmost display. The next entry is also placed in the right most
display but after the previous display is shifted left by one display position. The
leftmost characters is shifted out of that display at the seventeenth entry and is
lost, i.e. it is pushed out of the display RAM.

Command Words of 8279

• All the command words or status words are written or read with A0 = 1 and CS =

0 to or from 8279. This section describes the various command available in 8279.
a) Keyboard Display Mode Set – The format of the command word to select

different modes of operation of 8279 is given below with its bit definitions.

D7 D6 D5 D4 D3 D2 D1 A0D0

0 0 D D D K K 1K

b) Programmable clock : The clock for operation of 8279 is obtained by dividing
the external clock input signal by a programmable constant called prescaler.

• PPPPP is a 5-bit binary constant. The input frequency is divided by a decimal
constant ranging from 2 to 31, decided by the bits of an internal prescaler, PPPPP.

c) Read FIFO / Sensor RAM : The format of this command is given below.
• This word is written to set up 8279 for reading FIFO/ sensor RAM. In scanned

keyboard mode, AI and AAA bits are of no use. The 8279 will automatically
drive data bus for each subsequent read, in the same sequence, in which the data
was entered.

• In sensor matrix mode, the bits AAA select one of the 8 rows of RAM. If AI flag
is set, each successive read will be from the subsequent RAM location.

D D Display modes

K K K Keyboard modes

0 0

0 1

1 0

1 1

Eight 8-bit character Left entry
Sixteen 8-bit character left entry

Eight 8-bit character Right entry

Sixteen 8-bit character Right entry

0 0 0 Encoded Scan, 2 key lockout (Default after reset)
0 0 1
0 1 0

0 1 1
1 0 0

1 0 1

1 1 0

1 1 1

Decoded Scan, 2 key lockout
Encoded Scan, N- key Roll over
Decoded Scan, N- key Roll over
Encode Scan, N- key Roll over
Decoded Scan, N- key Roll over

Strobed Input Encoded Scan
Strobed Input Decoded Scan

D7 D6 D5 D4 D3 D2 D1 A0D0

0 0 1 P P P P 1 P

d) Read Display RAM : This command enables a programmer to read the display
RAM data. The CPU writes this command word to 8279 to prepare it for display
RAM read operation. AI is auto increment flag and AAAA, the 4-bit address
points to the 16-byte display RAM that is to be read. If AI=1, the address will be
automatically, incremented after each read or write to the Display RAM. The
same address counter is used for reading and writing.

e) Write Display RAM :

 AI – Auto increment Flag.
 AAAA – 4 bit address for 16-bit display RAM to be written.

D7 D6 D5 D4 D3 D2 D1 A0D0

0 1 0 AI X A A 1 A

X – don’t care
AI – Auto Increment Flag
AAA – Address pointer to 8 bit FIFO RAM

D7 D6 D5 D4 D3 D2 D1 A0D0

0 1 1 AI A A A 1 A

D7 D6 D5 D4 D3 D2 D1 A0D0

1 0 0 AI A A A 1 A

f) Display Write Inhibit/Blanking : The IW (inhibit write flag) bits are used to
mask the individual nibble as shown in the below command word. The output
lines are divided into two nibbles (OUTA0 – OUTA3) and (OUTB0 – OUTB3
), those can be masked by setting the corresponding IW bit to 1.

• Once a nibble is masked by setting the corresponding IW bit to 1, the entry to
display RAM does not affect the nibble even though it may change the unmasked
nibble. The blank display bit flags (BL) are used for blanking A and B nibbles.

• Here D0, D2 corresponds to OUTB0 – OUTB3 while D1 and D3 corresponds to
OUTA0-OUTA3 for blanking and masking.

• If the user wants to clear the display, blank (BL) bits are available for each nibble
as shown in format. Both BL bits will have to be cleared for blanking both the
nibbles.

g) Clear Display RAM : The CD2, CD1, CD0 is a selectable blanking code to clear
all the rows of the display RAM as given below. The characters A and B
represents the output nibbles.

• CD2 must be 1 for enabling the clear display command. If CD2 = 0, the clear
display command is invoked by setting CA=1 and maintaining CD1, CD0 bits
exactly same as above. If CF=1, FIFO status is cleared and IRQ line is pulled
down.

• Also the sensor RAM pointer is set to row 0. if CA=1, this combines the effect of
CD and CF bits. Here, CA represents Clear All and CF as Clear FIFO RAM.

D7 D6 D5 D4 D3 D2 D1 A0D0

1 0 1 X IW IW BL 1 BL

h) End Interrupt / Error mode Set : For the sensor matrix mode, this command
lowers the IRQ line and enables further writing into the RAM. Otherwise, if a
change in sensor value is detected, IRQ goes high that inhibits writing in the
sensor RAM.

• For N-Key roll over mode, if the E bit is programmed to be ‘1’, the 8279 operates
in special Error mode. Details of this mode are described in scanned keyboard
special error mode. X- don’t care.

D7 D6 D5 D4 D3 D2 D1 A0D0

1 1 0 CD2 CD1 CD0 CF 1 CA

CD2 CD1 CD0
1 0 X
1 1 0
1 1 1

All zeros (x don’t care) AB=00
A3-A0 =2 (0010) and B3-B0=00 (0000)
All ones (AB =FF), i.e. clear RAM

D7 D6 D5 D4 D3 D2 D1 A0D0

1 1 1 E X X X 1 X

8

4

4

8086

8279

INTR

AD0-AD15
A16-A19

RD
WR

PCLK
(from 8284)

Address
decoder

8282 (3)
Address
latch

8259
Interru
pt
controll
er

A0L

A1L-A3L

A0L-A19L

INT2
Shift

Control
Key
board

8 columns
8 rows

8

3-8 decoder

4-16

Addres
Display
characte
r data

Blank
display

BD

A0-3B0-3CLK
A0
CS

Reset
IOW
IOR

INT

D0-7

RL0-

7

S0-3

5V VDD

Vs 0V
Scan
lines

Return
lines

16

4

3

Data

 8259A

• If we are working with an 8086, we have a problem here because the 8086 has
only two interrupt inputs, NMI and INTR.

• If we save NMI for a power failure interrupt, this leaves only one interrupt for all
the other applications. For applications where we have interrupts from multiple
source, we use an external device called a priority interrupt controller (PIC) to
the interrupt signals into a single interrupt input on the processor.

Architecture and Signal Descriptions of 8259A

• The architectural block diagram of 8259A is shown in fig1. The functional
explication of each block is given in the following text in brief.

• Interrupt Request Register (RR): The interrupts at IRQ input lines are handled
by Interrupt Request internally. IRR stores all the interrupt request in it in order to
serve them one by one on the priority basis.

• In-Service Register (ISR): This stores all the interrupt requests those are being
served, i.e. ISR keeps a track of the requests being served.

• Priority Resolver : This unit determines the priorities of the interrupt requests

appearing simultaneously. The highest priority is selected and stored into the
corresponding bit of ISR during INTA pulse. The IR0 has the highest priority

Fig:1 8259A Block Diagram

Interrupt Mask Register
IMR

Control Logic

IN Service
Register
ISR

Priority
Resolver

Interrupt
Request
Register
IRR

Data Bus
Buffer

Read/
Write
Logic

Cascade
Buffer/
Comparator

D0-D7

RD
WR

A0

CS

CAS0

CAS1

CAS2

SP / EN

INTA INT

Internal Bus

IR0

IR1

IR7

while the IR7 has the lowest one, normally in fixed priority mode. The priorities
however may be altered by programming the 8259A in rotating priority mode.

• Interrupt Mask Register (IMR) : This register stores the bits required to mask
the interrupt inputs. IMR operates on IRR at the direction of the Priority Resolver.

• Interrupt Control Logic: This block manages the interrupt and interrupt
acknowledge signals to be sent to the CPU for serving one of the eight interrupt
requests. This also accepts the interrupt acknowledge (INTA) signal from CPU
that causes the 8259A to release vector address on to the data bus.

• Data Bus Buffer : This tristate bidirectional buffer interfaces internal 8259A bus
to the microprocessor system data bus. Control words, status and vector
information pass through data buffer during read or write operations.

• Read/Write Control Logic: This circuit accepts and decodes commands from the
CPU. This block also allows the status of the 8259A to be transferred on to the
data bus.

• Cascade Buffer/Comparator: This block stores and compares the ID’s all the
8259A used in system. The three I/O pins CASO-2 are outputs when the 8259A is
used as a master. The same pins act as inputs when the 8259A is in slave mode.
The 8259A in master mode sends the ID of the interrupting slave device on these
lines. The slave thus selected, will send its preprogrammed vector address on the
data bus during the next INTA pulse.

• CS: This is an active-low chip select signal for enabling RD and WR operations
of 8259A. INTA function is independent of CS.

• WR : This pin is an active-low write enable input to 8259A. This enables it to
accept command words from CPU.

• RD : This is an active-low read enable input to 8259A. A low on this line enables
8259A to release status onto the data bus of CPU.

• D0-D7 : These pins from a bidirectional data bus that carries 8-bit data either to
control word or from status word registers. This also carries interrupt vector
information.

• CAS0 – CAS2 Cascade Lines : A signal 8259A provides eight vectored
interrupts. If more interrupts are required, the 8259A is used in cascade mode. In
cascade mode, a master 8259A along with eight slaves 8259A can provide upto
64 vectored interrupt lines. These three lines act as select lines for addressing the
slave 8259A.

• PS/EN : This pin is a dual purpose pin. When the chip is used in buffered mode, it
can be used as buffered enable to control buffer transreceivers. If this is not used
in buffered mode then the pin is used as input to designate whether the chip is
used as a master (SP =1) or slave (EN = 0).

• INT : This pin goes high whenever a valid interrupt request is asserted. This is

used to interrupt the CPU and is connected to the interrupt input of CPU.
• IR0 – IR7 (Interrupt requests) :These pins act as inputs to accept interrupt

request to the CPU. In edge triggered mode, an interrupt service is requested by
raising an IR pin from a low to a high state and holding it high until it is
acknowledged, and just by latching it to high level, if used in level triggered
mode.

• INTA (Interrupt acknowledge): This pin is an input used to strobe-in 8259A
interrupt vector data on to the data bus. In conjunction with CS, WR and RD pins,
this selects the different operations like, writing command words, reading status
word, etc.

• The device 8259A can be interfaced with any CPU using either polling or
interrupt. In polling, the CPU keeps on checking each peripheral device in
sequence to ascertain if it requires any service from the CPU. If any such service
request is noticed, the CPU serves the request and then goes on to the next device
in sequence.

• After all the peripheral device are scanned as above the CPU again starts from
first device.

• This type of system operation results in the reduction of processing speed because
most of the CPU time is consumed in polling the peripheral devices.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21

18
19
20

15

16
17

GND CAS2

SP / EN
INT
IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

INTA

A0

Vcc

CAS1

CAS0

D0

D1

D2

D3

D4

D5

D6

D7

RD
WR
CS

Fig : 8259 Pin Diagram

8259A

• In the interrupt driven method, the CPU performs the main processing task till it
is interrupted by a service requesting peripheral device.

• The net processing speed of these type of systems is high because the CPU serves
the peripheral only if it receives the interrupt request.

• If more than one interrupt requests are received at a time, all the requesting
peripherals are served one by one on priority basis.

• This method of interfacing may require additional hardware if number of
peripherals to be interfaced is more than the interrupt pins available with the CPU.

Interrupt Sequence in an 8086 system

• The Interrupt sequence in an 8086-8259A system is described as follows:
1. One or more IR lines are raised high that set corresponding IRR bits.
2. 8259A resolves priority and sends an INT signal to CPU.
3. The CPU acknowledge with INTA pulse.
4. Upon receiving an INTA signal from the CPU, the highest priority ISR bit is set

and the corresponding IRR bit is reset. The 8259A does not drive data during this
period.

5. The 8086 will initiate a second INTA pulse. During this period 8259A releases an
8-bit pointer on to a data bus from where it is read by the CPU.

6. This completes the interrupt cycle. The ISR bit is reset at the end of the second
INTA pulse if automatic end of interrupt (AEOI) mode is programmed. Otherwise
ISR bit remains set until an appropriate EOI command is issued at the end of
interrupt subroutine.

Command Words of 8259A

• The command words of 8259A are classified in two groups
1. Initialization command words (ICW) and
2. Operation command words (OCW).
• Initialization Command Words (ICW): Before it starts functioning, the 8259A

must be initialized by writing two to four command words into the respective
command word registers. These are called as initialized command words.

• If A0 = 0 and D4 = 1, the control word is recognized as ICW1. It contains the
control bits for edge/level triggered mode, single/cascade mode, call address
interval and whether ICW4 is required or not.

• If A0=1, the control word is recognized as ICW2. The ICW2 stores details
regarding interrupt vector addresses. The initialisation sequence of 8259A is
described in form of a flow chart in fig 3 below.

• The bit functions of the ICW1 and ICW2 are self explanatory as shown in fig
below.

Fig 3: Initialisation Sequence of 8259A

ICW1

ICW2

A : IN CASCADE MODE ? A

ICW3

B B : IS ICW4 NEEDED ?

ICW4

Ready to Accept
Interrupt Request

YES (IC4 = 1)

YES (SINGLE =0)

NO (SINGLE =1)

NO (IC4 =0)

• Once ICW1 is loaded, the following initialization procedure is carried out

internally.
a. The edge sense circuit is reset, i.e. by default 8259A interrupts are edge sensitive.
b. IMR is cleared.
c. IR7 input is assigned the lowest priority.
d. Slave mode address is set to 7.
e. Special mask mode is cleared and status read is set to IRR.
f. If IC4 = 0, all the functions of ICW4 are set to zero. Master/Slave bit in ICW4 is

used in the buffered mode only.
g. In an 8085 based system A15-A8 of the interrupt vector address are the respective

bits of ICW2.
h. In 8086 based system A15-A11 of the interrupt vector address are inserted in

place of T7 – T3 respectively and the remaining three bits A8, A9, A10 are
selected depending upon the interrupt level, i.e. from 000 to 111 for IR0 to IR7.

i. ICW1 and ICW2 are compulsory command words in initialization sequence of
8259A as is evident from fig, while ICW3 and ICW4 are optional. The ICW3 is
read only when there are more than one 8259A in the system, cascading is used (
SNGL=0).

j. The SNGL bit in ICW1 indicates whether the 8259A in the cascade mode or not.
The ICW3 loads an 8-bit slave register. It detailed functions are as follows.

D0 D1D2D3D4D5D6 D7 A0

D0 D1D2D3D4D5D6 D7 A0

0 A7 A6 A5 1 LTIM ADI SNGL IC4

1 = ICW4 Needed
0 = No ICW4

1 – Single
0 - Cascaded

Call Address Interval
1 – Interval of 4 bytes
0 – Interval of 8 bytes.

1 – Level Triggered
0 – Edge Triggered

A7-A5 of Interrupt
vector address MCs
80/85 mode only

ICW1

1 T7 T6 T5 T4 T3 A10 A9 A8

Fig 4 : Instruction Command Words ICW1 and ICW2

• T7 – T3 are A3 – A0 of interrupt address
• A10 – A9, A8 – Selected according to interrupt request level.

They are not the address lines of Microprocessor
• A0 =1 selects ICW2

ICW2

k. In master mode [SP = 1 or in buffer mode M/S = 1 in ICW4], the 8-bit slave
register will be set bit-wise to 1 for each slave in the system as in fig 5.

l. The requesting slave will then release the second byte of a CALL sequence. In
slave mode [SP=0 or if BUF =1 and M/S = 0 in ICW4] bits D2 to D0 identify the
slave, i.e. 000 to 111 for slave 1 to slave 8. The slave compares the cascade inputs
with these bits and if they are equal, the second byte of the CALL sequence is
released by it on the data bus.

• ICW4: The use of this command word depends on the IC4 bit of ICW1. If IC4=1,
IC4 is used, otherwise it is neglected. The bit functions of ICW4 are described as
follow:

• SFNM: If BUF = 1, the buffered mode is selected. In the buffered mode, SP/EN
acts as enable output and the master/slave is determined using the M/S bit of
ICW4.

• M/S: If M/S = 1, 8259A is a master. If M/S =0, 8259A is slave. If BUF = 0, M/S
is to be neglected.

• AEOI: If AEOI = 1, the automatic end of interrupt mode is selected.

D0 D1 D2D3D4D5D6 D7 A0

1 S7 S6 S5 S4 S3 S2 S1 S0

D0 D1 D2D3D4D5D6 D7 A0

1 0 0 0 0 0 ID2 ID1 ID0

Master mode ICW3

Sn = 1-IRn Input has a slave
= 0 – IRn Input does not have a slave

Slave mode ICW3

D2D1D0 – 000 to 111 for IR0 to IR7 or slave 1 to slave 8

Fig : ICW3 in Master and Slave Mode, ICW4 Bit Functions

D0 D1 D2D3D4D5D6 D7 A0

1 0 0 0 SFNM BUF M/S AEOI µPM

ICW4

• µPM : If the µPM bit is 0, the Mcs-85 system operation is selected and if µPM=1,
8086/88 operation is selected.

• Operation Command Words: Once 8259A is initialized using the previously
discussed command words for initialisation, it is ready for its normal function, i.e.
for accepting the interrupts but 8259A has its own way of handling the received
interrupts called as modes of operation. These modes of operations can be
selected by programming, i.e. writing three internal registers called as operation
command words.

• In the three operation command words OCW1, OCW2 and OCW3 every bit
corresponds to some operational feature of the mode selected, except for a few
bits those are either 1 or 0. The three operation command words are shown in fig
with the bit selection details.

• OCW1 is used to mask the masked and if it is 0 the request is enabled. In OCW2
the three bits, R, SL and EOI control the end of interrupt, the rotate mode and
their combinations as shown in fig below.

• The three bits L2, L1 and L0 in OCW2 determine the interrupt level to be selected
for operation, if SL bit is active i.e. 1.

• The details of OCW2 are shown in fig.
• In operation command word 3 (OCW3), if the ESMM bit, i.e. enable special mask

mode bit is set to 1, the SMM bit is neglected. If the SMM bit, i.e. special mask
mode. When ESMM bit is 0 the SMM bit is neglected. If the SMM bit. i.e. special
mask mode bit is 1, the 8259A will enter special mask mode provided ESMM=1.

• If ESMM=1 and SMM=0, the 8259A will return to the normal mask mode. The
details of bits of OCW3 are given in fig along with their bit definitions.

D0D1D2D3D4D5D6 D7

M7 M6 M5 M4 M3 M2 M1 M0

1 – Mask Set
0 – Mask Reset

A0

1

Fig (a) : OCW1

D0D1D2D3D4D5D6 D7

0 ESMM SMM 0 1 P RR RIS

A0

0

Fig (b) :

0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

No Action 1 – Poll
Command
0 – No Poll
Command

Read IRR on
next RD pulse

Read IRR on
next RD pulse

No
Reset Special
Mask
Set Special
Mask

Fig : Operation Command Words

Operating Modes of 8259

• The different modes of operation of 8259A can be programmed by setting or

resting the appropriate bits of the ICW or OCW as discussed previously. The
different modes of operation of 8259A are explained in the following.

• Fully Nested Mode : This is the default mode of operation of 8259A. IR0 has the
highest priority and IR7 has the lowest one. When interrupt request are noticed,
the highest priority request amongst them is determined and the vector is placed
on the data bus. The corresponding bit of ISR is set and remains set till the
microprocessor issues an EOI command just before returning from the service
routine or the AEOI bit is set.

• If the ISR (in service) bit is set, all the same or lower priority interrupts are
inhibited but higher levels will generate an interrupt, that will be acknowledge
only if the microprocessor interrupt enable flag IF is set. The priorities can
afterwards be changed by programming the rotating priority modes.

• End of Interrupt (EOI) : The ISR bit can be reset either with AEOI bit of ICW1
or by EOI command, issued before returning from the interrupt service routine.
There are two types of EOI commands specific and non-specific. When 8259A is
operated in the modes that preserve fully nested structure, it can determine which
ISR bit is to be reset on EOI.

• When non-specific EOI command is issued to 8259A it will be automatically reset
the highest ISR bit out of those already set.

D0 D1D2D3D4D5D6 D7

R SL EOI 0 0 L2 L1 L0

A0

1

0 0 1
0 1 1

1 1
1

0
0 0

0 0 0
1 1 1
1 1 0

0 0 1

0 1 2 3 4 5 6 7
0
0
0 0

0
0 0 1 1 1 1

1
1 1

1 1
1 1 0

0 0 0
0

0

NON-SPECIFIC EOI COMMAND
SPECIFIC EOI COMMAND
ROTATE ON NON-SPECIFIC EOI MODE (SET)
ROTATE IN AUTOMATIC EOI MODE (SET)
ROTATE IN AUTOMATIC EOI (CLEAR)
ROTATE ON SPECIFIC EOI COMMAND
SET PRIORITY COMMAND*

NO OPERATION

Fig : Operation Command Word

Fig (c) :OCW2

END OF
INTERRUPT

AUTOMATIC
ROTATION

SPECIFIC
ROTATION

* - In this Mode L0 – L2 are used

• When a mode that may disturb the fully nested structure is used, the 8259A is no
longer able to determine the last level acknowledged. In this case a specific EOI
command is issued to reset a particular ISR bit. An ISR bit that is masked by the
corresponding IMR bit, will not be cleared by non-specific EOI of 8259A, if it is
in special mask mode.

• Automatic Rotation : This is used in the applications where all the interrupting
devices are of equal priority.

• In this mode, an interrupt request IR level receives priority after it is served while
the next device to be served gets the highest priority in sequence. Once all the
device are served like this, the first device again receives highest priority.

• Automatic EOI Mode : Till AEOI=1 in ICW4, the 8259A operates in AEOI
mode. In this mode, the 8259A performs a non-specific EOI operation at the
trailing edge of the last INTA pulse automatically. This mode should be used only
when a nested multilevel interrupt structure is not required with a single 8259A.

• Specific Rotation : In this mode a bottom priority level can be selected, using L2,
L1 and L0 in OCW2 and R=1, SL=1, EOI=0.

• The selected bottom priority fixes other priorities. If IR5 is selected as a bottom
priority, then IR5 will have least priority and IR4 will have a next higher priority.
Thus IR6 will have the highest priority.

• These priorities can be changed during an EOI command by programming the
rotate on specific EOI command in OCW2.

• Specific Mask Mode: In specific mask mode, when a mask bit is set in OCW1, it
inhibits further interrupts at that level and enables interrupt from other levels,
which are not masked.

• Edge and Level Triggered Mode : This mode decides whether the interrupt
should be edge triggered or level triggered. If bit LTIM of ICW1 =0 they are edge
triggered, otherwise the interrupts are level triggered.

• Reading 8259 Status : The status of the internal registers of 8259A can be read
using this mode. The OCW3 is used to read IRR and ISR while OCW1 is used to
read IMR. Reading is possible only in no polled mode.

• Poll Command : In polled mode of operation, the INT output of 8259A is
neglected, though it functions normally, by not connecting INT output or by
masking INT input of the microprocessor. The poll mode is entered by setting
P=1 in OCW3.

• The 8259A is polled by using software execution by microprocessor instead of the
requests on INT input. The 8259A treats the next RD pulse to the 8259A as an
interrupt acknowledge. An appropriate ISR bit is set, if there is a request. The
priority level is read and a data word is placed on to data bus, after RD is
activated. A poll command may give more than 64 priority levels.

• Special Fully Nested Mode : This mode is used in more complicated system,
where cascading is used and the priority has to be programmed in the master
using ICW4. this is somewhat similar to the normal nested mode.

• In this mode, when an interrupt request from a certain slave is in service, this
slave can further send request to the master, if the requesting device connected to
the slave has higher priority than the one being currently served. In this mode, the
master interrupt the CPU only when the interrupting device has a higher or the
same priority than the one current being served. In normal mode, other requests
than the one being served are masked out.

• When entering the interrupt service routine the software has to check whether this
is the only request from the slave. This is done by sending a non-specific EOI can
be sent to the master, otherwise no EOI should be sent. This mode is important,
since in the absence of this mode, the slave would interrupt the master only once
and hence the priorities of the slave inputs would have been disturbed.

• Buffered Mode: When the 83259A is used in the systems where bus driving
buffers are used on data buses. The problem of enabling the buffers exists. The
8259A sends buffer enable signal on SP/ EN pin, whenever data is placed on the
bus.

• Cascade Mode : The 8259A can be connected in a system containing one master
and eight slaves (maximum) to handle upto 64 priority levels. The master controls
the slaves using CAS0-CAS2 which act as chip select inputs (encoded) for slaves.

• In this mode, the slave INT outputs are connected with master IR inputs. When a
slave request line is activated and acknowledged, the master will enable the slave
to release the vector address during second pulse of INTA sequence.

• The cascade lines are normally low and contain slave address codes from the
trailing edge of the first INTA pulse to the trailing edge of the second INTA
pulse. Each 8259A in the system must be separately initialized and programmed
to work in different modes. The EOI command must be issued twice, one for
master and the other for the slave.

• A separate address decoder is used to activate the chip select line of each 8259A.
• Following Fig shows the details of the circuit connections of 8259A in cascade

scheme.

D0D1D2D3D4D5 D6 D7

1 x x x x w2 w1 w0

If = 1, there is an interrupt
Binary code of
highest priority
level

Fig : Data Word of 8259

Vcc

Fig : 8259A in Cascade Mode

Master Slave 0 Slave 7
M0 M1 M2 M3 M4 M5 M6 M7

SP/E
CS A0 D0-D7 INT

INT

CS A0 D0-D7 INT
SP/E

INT
IR0IR7

INT

IR0IR7

CS

A0

D0-D7

INT
CAS0-CAS2

DATA BUS

CONTROL BUS

ADDRESS BUS

A1 A1
A1

Interfacing a Microprocessor To Keyboard

• When you press a key on your computer, you are activating a switch. There are
many different ways of making these switches. An overview of the construction
and operation of some of the most common types.

1. Mechanical key switches: In mechanical-switch keys, two pieces of metal are
pushed together when you press the key. The actual switch elements are often
made of a phosphor-bronze alloy with gold platting on the contact areas. The key
switch usually contains a spring to return the key to the nonpressed position and
perhaps a small piece of foam to help damp out bouncing.

2. Some mechanical key switches now consist of a molded silicon dome with a
small piece of conductive rubber foam short two trace on the printed-circuit board
to produce the key pressed signal.

3. Mechanical switches are relatively inexpensive but they have several
disadvantages. First, they suffer from contact bounce. A pressed key may make
and break contact several times before it makes solid contact.

4. Second, the contacts may become oxidized or dirty with age so they no longer
make a dependable connection.

• Higher-quality mechanical switches typically have a rated life time of about 1
million keystrokes. The silicone dome type typically last 25 million keystrokes.

2. Membrane key switches: These switches are really a special type of mechanical
switches. They consist of a three-layer plastic or rubber sandwich.

• The top layer has a conductive line of silver ink running under each key position.
The bottom layer has a conductive line of silver ink running under each column of
keys.

• When u press a key, you push the top ink line through the hole to contact the
bottom ink line.

• The advantages of membrane keyboards is that they can be made as very thin,
sealed units.

• They are often used on cash registers in fast food restaurants. The lifetime of
membrane keyboards varies over a wide range.

3. Capacitive key switches: A capacitive keyswitch has two small metal plates on
the printed circuit board and another metal plate on the bottom of a piece of foam.

• When u press the key, the movable plate is pushed closer to fixed plate. This
changes the capacitance between the fixed plates. Sense amplifier circuitry detects
this change in capacitance and produce a logic level signal that indicates a key has
been pressed.

• The big advantages of a capacitive switch is that it has no mechanical contacts to
become oxidized or dirty.

• A small disadvantage is the specified circuitry needed to detect the change in
capacitance.

• Capacitive keyswitches typically have a rated lifetime of about 20 million
keystrokes.

4. Hall effect keyswitches: This is another type of switch which has no mechanical
contact. It takes advantage of the deflection of a moving charge by a magnetic
field.

• A reference current is passed through a semiconductor crystal between two
opposing faces. When a key is pressed, the crystal is moved through a magnetic
field which has its flux lines perpendicular to the direction of current flow in the
crystal.

• Moving the crystal through the magnetic field causes a small voltage to be
developed between two of the other opposing faces of the crystal.

• This voltage is amplified and used to indicate that a key has been pressed. Hall
effect sensors are also used to detect motion in many electrically controlled
machines.

• Hall effect keyboards are more expensive because of the more complex switch
mechanism, but they are very dependable and have typically rated lifetime of 100
million or more keystrokes.

Keyboard Circuit Connections and Interfacing

• In most keyboards, the keyswitches are connecting in a matrix of rows and
columns, as shown in fig.

• We will use simple mechanical switches for our examples, but the principle is
same for other type of switches.

• Getting meaningful data from a keyboard, it requires the following three major
tasks:

1. Detect a keypress.

HALL
VOLTAGE

Reference
Current

Key
Motion

Magnetic Field

HALL EFFECT

2. Debounce the keypress.
3. Encode the keypress
• Three tasks can be done with hardware, software, or a combination of two,

depending on the application.
1. Software Keyboard Interfacing:
• Circuit connection and algorithm : The following fig (a) shows how a

hexadecimal keypad can be connected to a couple of microcomputer ports so the
three interfacing tasks can be done as part of a program.

• The rows of the matrix are connected to four output port lines. The column lines
of matrix are connected to four input-port lines. To make the program simpler, the
row lines are also connected to four input lines.

• When no keys are pressed, the column lines are held high by the pull-up resistor
connected to +5V. Pressing a key connects a row to a column. If a low is output
on a row and a key in that row is pressed, then the low will appear on the column
which contains that key and can be detected on the input port.

• If you know the row and column of the pressed key, you then know which key
was pressed, and you can convert this information into any code you want to
represent that key.

• The following flow chart for a procedure to detect, debounce and produce the hex
code for a pressed key.

• An easy way to detect if any key in the matrix is pressed is to output 0’s to all
rows and then check the column to see if a pressed key has connected a low to a
column.

• In the algorithm we first output lows to all the rows and check the columns over
and over until the column are all high. This is done before the previous key has
been released before looking for the next one. In the standard keyboard
terminology, this is called two-key lockout.

• Once the columns are found to be all high, the program enters another loop, which
waits until a low appears on one of the columns, indicating that a key has been
pressed. This second loop does the detect task for us. A simple 20-ms delay
procedure then does the debounce task.

• After the debounce time, another check is made to see if the key is still pressed. If
the columns are now all high, then no key is pressed and the initial detection was
caused by a noise pulse or a light brushing past a key. If any of the columns are
still low, then the assumption is made that it was a valid keypress.

• The final task is to determine the row and column of the pressed key and convert
this row and column information to the hex code for the pressed key. To get the
row and column information, a low is output to one row and the column are read.
If none of the columns is low, the pressed key is not in that row. So the low is
rotated to the next row and the column are checked again. The process is repeated
until a low on a row produces a low on one of the column.

• The pressed key then is in the row which is low at that time.
• The connection fig shows the byte read in from the input port will contain a 4-bit

code which represents the row of the pressed key and a 4-bit code which represent
the column of the pressed key.

• Error trapping: The concept of detecting some error condition such as “ no match
found” is called error trapping. Error trapping is a very important part of real
programs. Even in simple programs, think what might happen with no error trap if

KEYBOARD

ZERO TO ALL
ROWS

READ
COLUMNS

READ
COLUMNS

KEY
PRESSE
D ?

ALL
KEYS
OPEN ?

WAIT 20ms

READ
COLUMNS

KEY
PRESSED
?

OUTPUT ZERO
TO ONE ROW

READ
COLUMNS

KEY
FOUND
?

CONVERT TO
HEX

RETURN

E
N
C
O
D
E

YES

NO

YES

NO

YES

NO

YES

NO

D
E

B
O
U
N
C
E

D
E
T
E
C
T

FLOW CHART

two keys in the same row were pressed at exactly at the same time and a column
code with two lows in it was produced.

• This code would not match any of the row-column codes in the table, so after all
the values in the table were checked, assigned register in program would be
decremented from 0000H to FFFFH. The compare decrement cycle would
continue through 65,536 memory locations until, by change the value in a
memory location matched the row-column code. The contents of the lower byte
register at hat point would be passed back to the calling routine. The changes are
1 in 256 that would be the correct value for one of the pressed keys. You should
keep an error trap in a program whenever there is a chance for it.

2. Keyboard Interfacing with Hardware: For the system where the CPU is too
busy to be bothered doing these tasks in software, an external device is used to do
them.

• One of a MOS device which can be do this is the General Instruments AY5-2376
which can be connected to the rows and columns of a keyboard switch matrix.

• The AY5-2376 independently detects a keypress by cycling a low down through
the rows and checking the columns. When it finds a key pressed, it waits a
debounce time.

• If the key is still pressed after the debounce time, the AY5-2376 produces the 8-
bit code for the pressed key and send it out to microcomputer port on 8 parallel
lines. The microcomputer knows that a valid ASCII code is on the data lines, the
AY5-2376 outputs a strobe pulse.

• The microcomputer can detect this strobe pulse and read in ASCII code on a
polled basis or it can detect the strobe pulse on an interrupt basis.

• With the interrupt method the microcomputer doesn’t have to pay any attention to
the keyboard until it receives an interrupt signal.

• So this method uses very little of the microcomputer time. The AY5-2376 has a
feature called two-key rollover. This means that if two keys are pressed at nearly
the same time, each key will be detected, debounced and converted to ASCII.

• The ASCII code for the first key and a strobe signal for it will be sent out then the
ASCII code for the second key and a strobe signal for it will be sent out and
compare this with two-key lockout.

Example

• Interface a 4 * 4 keyboard with 8086 using 8255 an write an ALP for detecting a
key closure and return the key code in AL. The debounce period for a key is
10ms. Use software debouncing technique. DEBOUNCE is an available 10ms
delay routine.

• Solution: Port A is used as output port for selecting a row of keys while Port B is
used as an input port for sensing a closed key. Thus the keyboard lines are
selected one by one through port A and the port B lines are polled continuously
till a key closure is sensed. The routine DEBOUNCE is called for key
debouncing. The key code is depending upon the selected row and a low sensed
column.

D0

D1

D2

D3

Output port 01

Input port
02

+ 5V

10KΩ

D0

D1

D
2

D
3

D
4

D
5

D
6

D
7

D0

D1

D2

D3

D4

D5

D6

D7

D3

D2

D1

D0

0

C D E F

8 9 A B

1 2 3

4 5 6 7

Fig: (a) Port connections

• The higher order lines of port A and port B are left unused. The address of port A

and port B will respectively 8000H and 8002H while address of CWR will be
8006H. The flow chart of the complete program is as given. The control word for
this problem will be 82H. Code segment CS is used for storing the program code.

• Key Debounce : Whenever a mechanical push-button is pressed or released once,
the mechanical components of the key do not change the position smoothly, rather
it generates a transient response .

+ 5V

10KΩ 0

C D E F

8 9 A B

1 2 3

4 5 6 7

Interfacing 4 * 4 Keyboard

10KΩ

10KΩ

10KΩ

10
K
Ω

10
K
Ω

10
K
Ω

10
K
Ω

8255

PB0

PB1

PB2

PB3

PA0

PA1

PA2

PA3

CS

A0

A1

A1

A2

D0-D7

IORD

LOWR

RESET

A0

A14

A15
A12 A13

• These transient variations may be interpreted as the multiple key pressure and
responded accordingly by the microprocessor system.

• To avoid this problem, two schemes are suggested: the first one utilizes a bistable
multivibrator at the output of the key to debounce .

• The other scheme suggests that the microprocessor should be made to wait for the
transient period (usually 10ms), so that the transient response settles down and
reaches a steady state.

• A logic ‘0’ will be read by the microprocessor when the key is pressed.
• In a number of high precision applications, a designer may have two options- the

first is to have more than one 8-bit port, read (write) the port one by one and then
from the multibyte data, the second option allows forming 16-bit ports using two
8-bit ports and use 16-bit read or write operations.

START

Initialise 8255 row,
column counter and key
code reg.

Key
Closed

Wait for Debounce

Set row counter

Ground one row

Read Column counter

Set column counter

Check for key pressed

Transfer code to accumulator

STOP

Is the key
found ?

Decrement row counter

Increment code register
Decrement column counter

 column
counter=0?

row
Counter =0 ?

No

No

No

Yes

Flow chart

+ 5 V

V0

A Mechanical Key

Logic 0

Logic 1

Key released
Key pressed Key released

Logic 0

Response

Interfacing To Alphanumeric Displays

• To give directions or data values to users, many microprocessor-controlled
instruments and machines need to display letters of the alphabet and numbers. In
systems where a large amount of data needs to be displayed a CRT is used to
display the data. In system where only a small amount of data needs to be
displayed, simple digit-type displays are often used.

• There are several technologies used to make these digit-oriented displays but we
are discussing only the two major types.

• These are light emitting diodes (LED) and liquid-crystal displays (LCD).
• LCD displays use very low power, so they are often used in portable, battery-

powered instruments. They do not emit their own light, they simply change the
reflection of available light. Therefore, for an instrument that is to be used in low-
light conditions, you have to include a light source for LCDs or use LEDs which
emit their own light.

• Alphanumeric LED displays are available in three common formats. For
displaying only number and hexadecimal letters, simple 7-segment displays such
as that as shown in fig are used.

• To display numbers and the entire alphabet, 18 segment displays such as shown in
fig or 5 by 7 dot-matrix displays such as that shown in fig can be used. The 7-
segment type is the least expensive, most commonly used and easiest to interface
with, so we will concentrate first on how to interface with this type.

1. Directly Driving LED Displays: Figure shows a circuit that you might connect to
a parallel port on a microcomputer to drive a single 7-segment , common-anode
display. For a common-anode display, a segment is tuned on by applying a logic
low to it.

• The 7447 converts a BCD code applied to its inputs to the pattern of lows
required to display the number represented by the BCD code. This circuit
connection is referred to as a static display because current is being passed
through the display at all times.

• Each segment requires a current of between 5 and 30mA to light. Let’s assume
you want a current of 20mA. The voltage drop across the LED when it is lit is
about 1.5V.

• The output low voltage for the 7447 is a maximum of 0.4V at 40mA. So assume
that it is about 0.2V at 20mA. Subtracting these two voltage drop from the supply
voltage of 5V leaves 3.3V across the current limiting resistor. Dividing 3.3V by
20mA gives a value of 168Ω for the current-limiting resistor. The voltage drops
across the LED and the output of 7447 are not exactly predictable and exact
current through the LED is not critical as long as we don’t exceed its maximum
rating.

2. Software-Multiplexed LED Display:
• The circuit in fig works for driving just one or two LED digits with a parallel

output port. However, this scheme has several problem if you want to drive, eight
digits.

• The first problem is power consumption. For worst-case calculations, assume that
all 8 digits are displaying the digit 8, so all 7 segments are all lit. Seven segment
time 20mA per segment gives a current of 140mA per digit. Multiplying this by 8
digits gives a total current of 1120mA or 1.12A for 8 digits.

• A second problem of the static approach is that each display digit requires a
separate 7447 decoder, each of which uses of another 13mA. The current required
by the decoders and the LED displays might be several times the current required
by the reset of the circuitry in the instrument.

• To solve the problem of the static display approach, we use a multiplex method,
example for an explanation of the multiplexing.

• The fig shows a circuit you can add to a couple of microcomputer ports to drive
some common anode LED displays in a multiplexed manner. The circuit has only
one 7447 and that the segment outputs of the 7447 are bused in parallel to the
segment inputs of all the digits.

• The question that may occur to you on first seeing this is: Aren’t all the digits
going to display the same number? The answer is that they would if all the digits
were turned on at the same time. The tricky of multiplexing displays is that only
one display digit is turned on at a time.

• The PNP transistor is series with the common anode of each digit acts as on/off
switch for that digit. Here’s how the multiplexing process works.

• The BCD code for digit 1 is first output from port B to the 7447. the 7447 outputs
the corresponding 7-segment code on the segment bus lines. The transistor
connected to digit 1 is then turned on by outputting a low to the appropriate bit of
port A. All the rest of the bits of port A are made high to make sure no other digits
are turned on. After 1 or 2 ms, digit 1 is turned off by outputting all highs to port
A.

• The BCD code for digit 2 is then output to the 7447 on port B, and a word to turn
on digit 2 is output on port A.

• After 1 or 2 ms, digit 2 is turned off and the process is repeated for digit 3. the
process is continued until all the digits have had a turn. Then digit 1 and the
following digits are lit again in turn.

• A procedure which is called on an interrupt basis every 2ms to keep these displays
refreshed wit some values stored in a table. With 8 digits and 2ms per digit, you
get back to digit 1 every 16ms or about 60 times a second.

• This refresh rate is fast enough so that the digits will each appear to be lit all time.
Refresh rates of 40 to 200 times a second are acceptable.

• The immediately obvious advantages of multiplexing the displays are that only
one 7447 is required, and only one digit is lit at a time. We usually increase the
current per segment to between 40 and 60 mA for multiplexed displays so that
they will appear as bright as they would if they were not multiplexed. Even with
this increased segment current, multiplexing gives a large saving in power and
parts.

• The software-multiplexed approach we have just described can also be used to
drive 18-segment LED devices and dot-matrix LED device. For these devices,
however you replace the 7447 in fig with ROM which generates the required

segment codes when the ASCII code for a character is applied to the address
inputs of the ROM.

+ 5 V

150 Ω
Each

7447

+ 5 V

Vcc

GND

+ 5 V

A B C D

BCD INPUTS

a b c d e f g

1 2 6 7

3

4

5

LT

RBI

BI

13 12 11 10 9 15 14

Circuit for driving single 7-segment LED display with 7447

Liquid Crystal Display

• Liquid Crystal displays are created by sandwiching a thin 10-12 µm layer of a
liquid-crystal fluid between two glass plates. A transparent, electrically
conductive film or backplane is put on the rear glass sheet. Transparent sections
of conductive film in the shape of the desired characters are coated on the front
glass plate.

• When a voltage is applied between a segment and the backplane, an electric field
is created in the region under the segment. This electric field changes the
transmission of light through the region under the segment film.

• There are two commonly available types of LCD : dynamic scattering and field-
effect.

• The Dynamic scattering types of LCD: It scrambles the molecules where the field
is present. This produces an etched-glass-looking light character on a dark
background.

7447
GND

Vcc

D C B A

OUTPUT
PORT
 A

D6
D5
D4
D3
D2
D1
D0

+ 5V

R1 R2 R3 R4 R5 R6
R7

OUTPUT
PORT
 B

+ 5 V

D0
D1

Q1 Q2 Q3 Q4 Q5 Q6 Q7

150Ω
150Ω 150Ω 150Ω

150Ω 150Ω
150Ω MSD LSD

D2
D3

• Field-effect types use polarization to absorb light where the electric field is
present. This produces dark characters on a silver- gray background.

• Most LCD’s require a voltage of 2 or 3 V between the backplane and a segment to
turn on the segment.

• We cannot just connect the backplane to ground and drive the segment with the
outputs of a TTL decoder. The reason for this is a steady dc voltage of more than
about 50mV is applied between a segment and the backplane.

• To prevent a dc buildup on the segments, the segment-drive signals for LCD must
be square waves with a frequency of 30 to 150 Hz.

• Even if you pulse the TTL decoder, it still will not work because the output low
voltage of TTL devices is greater than 50mV.

• CMOS gates are often used to drive LCDs.
• The Following fig shows how two CMOS gate outputs can be connected to drive

an LCD segment and backplane.
• The off segment receives the same drive signal as the backplane. There is never

any voltage between them, so no electric field is produced. The waveform for the
on segment is 180 out of phase with the backplane signal, so the voltage between
this segment and the backplane will always be +V.

• The logic for this signal, a square wave and its complement. To the driving gates,
the segment-backplane sandwich appears as a somewhat leaky capacitor.

• The CMOS gates can be easily supply the current required to charge and
discharge this small capacitance.

• Older inexpensive LCD displays turn on and off too slowly to be multiplexed the
way we do LED display.

• At 0c some LCD may require as mush as 0.5s to turn on or off. To interface to
those types we use a nonmultiplexed driver device.

• More expensive LCD can turn on and off faster, so they are often multiplexed
using a variety of techniques.

• In the following section we show you how to interface a nonmultiplexed LCD to a
microprocessor such as SDK-86.

• Intersil ICM7211M can be connected to drive a 4-digit, nonmultiplexed, 7-
segment LCD display.

• The 7211M input can be connected to port pins or directly to microcomputer bus.
We have connected the CS inputs to the Y2 output of the 74LS138 port decoder.

• According to the truth table the device will then be addressable as ports with a
base address of FF10H. SDK-86 system address lines A2 is connected to the
digit-select input (DS2) and system address lines A1 is connected to the DS1
input. This gives digit 4 a system address of FF10H.

• Digit 3 will be addressed at FF12H, digit 2 at FF14H and digit 1 at FF16H.
• The data inputs are connected to the lower four lines of the SDK-86 data bus. The

oscillator input is left open. To display a character on one of the digits, you
simply keep the 4-bit hex code for that digit in the lower 4 bits of the AL register
and output it to the system address for that digit.

• The ICM7211M converts the 4-bit hex code to the required 7-segment code.
• The rising edge of the CS input signal causes the 7-segment code to be latched in

the output latches for the address digit.
• An internal oscillator automatically generates the segment and backplane drive

waveforms as in fig . For interfacing with the LCD displays which can be
multiplexed the Intersil ICM7233 can be use.

A8-A15 A5-A7 A4 A3 A2 A1 A0 M/IO Y Output
Selected

System Base
Address

Device

1 0 X
1
1
1
1
1
1
1

0
0
0
0
0
0
0

0
0

0
0

0 0
0
0
0
0
0
0
0

0
0
0
1
1
1
1 X

X
X
X
X
X
X
X

X
X
X
X
X
X
X 1 1

1

1
1

0
1
0
1
0
1
0 00

1
2
3
4
5
6
7

F F 0 0
F F 0 8
F F 1 0
F F 1 8
F F 0 1
F F 0 9
F F 1 1
F F 1 9

8259A #1
8259A #2

8254

ALL OTHER STATES NONE

Fig : Truth table for 74LS138 address decoder

Interfacing Analog to Digital Data Converters

• In most of the cases, the PIO 8255 is used for interfacing the analog to digital
converters with microprocessor.

• We have already studied 8255 interfacing with 8086 as an I/O port, in previous
section. This section we will only emphasize the interfacing techniques of analog
to digital converters with 8255.

• The analog to digital converters is treaded as an input device by the
microprocessor, that sends an initialising signal to the ADC to start the analogy to
digital data conversation process. The start of conversation signal is a pulse of a
specific duration.

• The process of analog to digital conversion is a slow process, and the
microprocessor has to wait for the digital data till the conversion is over. After the
conversion is over, the ADC sends end of conversion EOC signal to inform the
microprocessor that the conversion is over and the result is ready at the output
buffer of the ADC. These tasks of issuing an SOC pulse to ADC, reading EOC

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Programmable
4 to 7 Decoder

7 Wide Latch
EN

7 Wide Driver

Enable Detector

Back
Plane
Driver
Enable

Back Plane
Output

Oscillator
16KHz Free
Running

/ 128 One
Shot

2 t o 4
Decoder

Enable

+5 V OSC Enable

74LS138
Y2

CS2

CS1

A1

A2

2 bit
Latch

Enable

4 – bit
latch

Enable

Data AD0
AD1
AD2
AD3

DS1

DS2

Segment Outputs
D4

Segment Outputs Segment Outputs Segment Outputs
D3 D2 D1

Fig : Circuit for interfacing four LCD digits to an SDK-86 bus using ICM7211M

ICM7211M

signal from the ADC and reading the digital output of the ADC are carried out by
the CPU using 8255 I/O ports.

• The time taken by the ADC from the active edge of SOC pulse till the active
edge of EOC signal is called as the conversion delay of the ADC.

• It may range any where from a few microseconds in case of fast ADC to even a
few hundred milliseconds in case of slow ADCs.

• The available ADC in the market use different conversion techniques for
conversion of analog signal to digitals. Successive approximation techniques and
dual slope integration techniques are the most popular techniques used in the
integrated ADC chip.

• General algorithm for ADC interfacing contains the following steps:
1. Ensure the stability of analog input, applied to the ADC.
2. Issue start of conversion pulse to ADC
3. Read end of conversion signal to mark the end of conversion processes.
4. Read digital data output of the ADC as equivalent digital output.
5. Analog input voltage must be constant at the input of the ADC right from the start

of conversion till the end of the conversion to get correct results. This may be
ensured by a sample and hold circuit which samples the analog signal and holds it
constant for a specific time duration. The microprocessor may issue a hold signal
to the sample and hold circuit.

6. If the applied input changes before the complete conversion process is over, the
digital equivalent of the analog input calculated by the ADC may not be correct.

ADC 0808/0809 :
• The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, successive

approximation converters. This technique is one of the fast techniques for analog
to digital conversion. The conversion delay is 100µs at a clock frequency of 640
KHz, which is quite low as compared to other converters. These converters do not
need any external zero or full scale adjustments as they are already taken care of
by internal circuits. These converters internally have a 3:8 analog multiplexer so
that at a time eight different analog conversion by using address lines -

 ADD A, ADD B, ADD C. Using these address inputs, multichannel data acquisition
system can be designed using a single ADC. The CPU may drive these lines using output
port lines in case of multichannel applications. In case of single input applications, these
may be hardwired to select the proper input.

• There are unipolar analog to digital converters, i.e. they are able to convert only
positive analog input voltage to their digital equivalent. These chips do no contain
any internal sample and hold circuit.

• If one needs a sample and hold circuit for the conversion of fast signal into
equivalent digital quantities, it has to be externally connected at each of the
analog inputs.

• Vcc Supply pins +5V
• GND GND
• Vref + Reference voltage positive +5 Volts maximum.
• Vref _ Reference voltage negative 0Volts minimum.
• I/P0 –I/P7 Analog inputs
• ADD A,B,C Address lines for selecting analog inputs.
• O7 – O0 Digital 8-bit output with O7 MSB and O0 LSB
• SOC Start of conversion signal pin
• EOC End of conversion signal pin
• OE Output latch enable pin, if high enables output
• CLK Clock input for ADC

Analog /P
selecte

Address lines

AC B

I / P 0

I / P 1

I / P 2

I / P 3

I / P 4

I / P 5

I / P 6

I / P 7

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

O/P
La tc h

O/P
Enable

8-bit
O/P

EOC

CLOCKSOC

Control and
Timing unit
and .A.R.

256 R
Register

ladder and
Switch tree

V ref + V ref _

8 C hannel
Analog

M ul tiplexer

ABC

I / P 0

I / P 1

I / P 2

I / P 3

I / P 4

I / P 5

I / P 6

I / P 7

Block Diagram of ADC 0808 / 0809
Address

• Example: Interfacing ADC 0808 with 8086 using 8255 ports. Use port A of 8255
for transferring digital data output of ADC to the CPU and port C for control
signals. Assume that an analog input is present at I/P2 of the ADC and a clock
input of suitable frequency is available for ADC.

• Solution: The analog input I/P2 is used and therefore address pins A,B,C should
be 0,1,0 respectively to select I/P2. The OE and ALE pins are already kept at +5V
to select the ADC and enable the outputs. Port C upper acts as the input port to
receive the EOC signal while port C lower acts as the output port to send SOC to
the ADC.

• Port A acts as a 8-bit input data port to receive the digital data output from the
ADC. The 8255 control word is written as follows:

 D7 D6 D5 D4 D3 D2 D1 D0
 1 0 0 1 1 0 0 0

• The required ALP is as follows:
 MOV AL, 98h ;initialise 8255 as
 OUT CWR, AL ;discussed above.
 MOV AL, 02h ;Select I/P2 as analog
 OUT Port B, AL ;input.
 MOV AL, 00h ;Give start of conversion
 OUT Port C, AL ; pulse to the ADC
 MOV AL, 01h
 OUT Port C, AL
 MOV AL, 00h
 OUT Port C, AL
WAIT: IN AL, Port C ;Check for EOC by

C L O C K

ST A R T

A L E

E O C

O E

O / P

Timing Diagram of ADC 0808

 RCR ; reading port C upper and
 JNC WAIT ;rotating through carry.
 IN AL, Port A ;If EOC, read digital equivalent in AL
 HLT ;Stop.

Interfacing 0808 with 8086

CS

D0 – D7

8255

ADC
0808

Vref +

Clock up

Analog
I/P
Voltage

C A B

GND

ALE

OE

+5V

EOC

SOC

Vref +

+ 5 V

+ 5 V Vcc

O7 – O0

A2

A1

Reset

IORD

IOWR PB2

PB1

PB0

PA7 – PA0

PC7

PC0

Interfacing Digital To Analog Converters

INTERFACING DIGITAL TO ANALOG CONVERTERS: The digital to analog

converters convert binary number into their equivalent voltages. The DAC find
applications in areas like digitally controlled gains, motors speed controls, programmable
gain amplifiers etc.

AD 7523 8-bit Multiplying DAC : This is a 16 pin DIP, multiplying digital to
analog converter, containing R-2R ladder for D-A conversion along with single pole
double thrown NMOS switches to connect the digital inputs to the ladder.

• The pin diagram of AD7523 is shown in fig the supply range is from +5V to
+15V, while Vref may be any where between -10V to +10V. The maximum
analog output voltage will be any where between -10V to +10V, when all the
digital inputs are at logic high state.

• Usually a zener is connected between OUT1 and OUT2 to save the DAC from
negative transients. An operational amplifier is used as a current to voltage
converter at the output of AD to convert the current out put of AD to a
proportional output voltage.

• It also offers additional drive capability to the DAC output. An external feedback
resistor acts to control the gain. One may not connect any external feedback
resistor, if no gain control is required.

• EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU running at 8MHZ and
write an assembly language program to generate a sawtooth waveform of period
1ms with Vmax 5V.

• Solution: Fig shows the interfacing circuit of AD 74523 with 8086 using 8255.
program gives an ALP to generate a sawtooth waveform using circuit.

ASSUME CS:CODE
CODE SEGMENT
START :MOV AL,80h ;make all ports output
 OUT CW, AL
AGAIN :MOV AL,00h ;start voltage for ramp
BACK : OUT PA, AL
 INC AL
 CMP AL, 0FFh
 JB BACK
 JMP AGAIN
CODE ENDS
END START

• In the above program, port A is initialized as the output port for sending the
digital data as input to DAC. The ramp starts from the 0V (analog), hence AL
starts with 00H. To increment the ramp, the content of AL is increased during
each execution of loop till it reaches F2H.

• After that the saw tooth wave again starts from 00H, i.e. 0V(analog) and the
procedure is repeated. The ramp period given by this program is precisely
1.000625 ms. Here the count F2H has been calculated by dividing the required
delay of 1ms by the time required for the execution of the loop once. The ramp
slope can be controlled by calling a controllable delay after the OUT instruction.

MSB

LSB
V0

8255A

CS

+

-

AD7523

GND

+5V +10V

VZ

OUT1

OUT2

RFB

3

11

4 1

2

16

14 15

PA0

PA7

Fig: Interfacing of AD7523

M. Krishna Kumar MAM/M7/MKK18/V1/2004 1

M. Krishna Kumar MAM/M7/MKK18/V1/2004 2

Contents

Architecture of 8087Architecture of 8087

Data types

InterfacingInterfacing

Instructions and
programming

M. Krishna Kumar MAM/M7/MKK18/V1/2004 3

Overview

Each processor in the 80x86 family has a corresponding
coprocessor with which it is compatible.

Math Coprocessor is known as NPX,NDP,FUP.
Numeric processor extension (NPX),
Numeric data processor (NDP),

Floating point unit (FUP).

M. Krishna Kumar MAM/M7/MKK18/V1/2004 4

Processors

1. 8086 & 8088
2. 80286
3. 80386DX
4. 80386SX
5. 80486DX
6. 80486SX

Coprocessors

1. 8087
2. 80287,80287XL
3. 80287,80387DX
4. 80387SX
5. It is Inbuilt
6. 80487SX

Compatible Processor and
Coprocessor

M. Krishna Kumar MAM/M7/MKK18/V1/2004 5

Pin Diagram of 8087

20GND

19
18

CLK

NC

NC 17
16

GND
AD14

AD13

AD12

AD11

AD10

AD9
AD8
AD7

AD6

AD5

AD4

AD3

AD2

AD1
AD0

15
14

13

12
11

1
2
3
4
5
6
7
8

9
10

RESET

READY

BUSY

QS1

Vcc
AD15

A16/S3

A17/S4

A18/S5

BHE/S7

A19/S6

RQ/GT1
INT

RQ/GT0

NC

NC _

S2__

S1

QS0

21

22
23

24
25
26
27
28
29

30

40
39
38
37
36
35
34
33
32

31

__

S0

8087

NPX

(A14)

(A13)
(A12)
(A11)
(A10)
(A9)
(A8)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 6

Architecture of Architecture of
80878087

Control Unit

Execution Unit

M. Krishna Kumar MAM/M7/MKK18/V1/2004 7

M. Krishna Kumar MAM/M7/MKK18/V1/2004 8

8-register stack, each has 80 bits

079
Vcc

+5V

0

4 MSB of operand address 0

16 LSB of operand address

Floating point arithmetic module

Status Register 16 bit

Control Register

16 LBS of instruction address

11 LSB of op code04MSB inst address

Bus
tracking
control
logic,
instruction
queue

Ready

Reset

Busy

CLK
INT

QS1-QS0

A19/S6 __ A16/S3

AD15 - AD0

to

____ ____

RQ/GT1

____ ____

RQ/GT0

BHE/S7

vss

TAG

TAG 7

TAG
register

M. Krishna Kumar MAM/M7/MKK18/V1/2004 9

Control word

Control Unit

Status word

8 Register Stack
Tag
word

0

7

Exception
pointer

Addressing
bus tracking

Data

buffer

Exponent
Module

Operand
queue

Micro control
unit

Programm
able shifter

Arithmetic
module

temporary
register

Numeric execution unit

Address

Status

Data

interface

80 Bits

16

16

16

64

68

Exponent bus Fraction bus

M. Krishna Kumar MAM/M7/MKK18/V1/2004 10

Control Unit

Control unit: To synchronize the operation of the coprocessor
and the processor.

This unit has a Control word and Status word and Data Buffer

If instruction is an ESCape (coprocessor) instruction, the
coprocessor executes it, if not the microprocessor executes.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 11

Status Register

• C3-C0 Condition code bits
• TOP Top-of-stack (ST)
• ES Error summary
• PE Precision error
• UE Under flow error
• OE Overflow error
• ZE Zero error
• DE Denormalized error
• IE Invalid error
• B Busy bit

B C3 ST C2 C1 C0 ES PE UE OE ZE DE IE

015

M. Krishna Kumar MAM/M7/MKK18/V1/2004 12

Status register reflects the over all operation of the
coprocessor.

B-Busy bit indicates that coprocessor is busy executing a task.
Busy can be tested by examining the status or by using the
FWAIT instruction. Newer coprocessor automatically
synchronize with the microprocessor, so busy flag need not be
tested before performing additional coprocessor tasks.

C3-C0 Condition code bits indicates conditions about the
coprocessor.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 13

TOP- Top of the stack (ST) bit indicates the current register
address as the top of the stack.

ES-Error summary bit is set if any unmasked error bit (PE,
UE, OE, ZE, DE, or IE) is set. In the 8087 the error summary
is also caused a coprocessor interrupt.

PE- Precision error indicates that the result or operand
executes selected precision.

UE-Under flow error indicates the result is too large to be
represent with the current precision selected by the control
word.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 14

OE-Over flow error indicates a result that is too large to be
represented. If this error is masked, the coprocessor generates
infinity for an overflow error.

ZE-A Zero error indicates the divisor was zero while the
dividend is a non-infinity or non-zero number.

DE-Denormalized error indicates at least one of the operand is
denormalized.

IE-Invalid error indicates a stack overflow or underflow,
indeterminate from (0/0,0,-0, etc) or the use of a NAN as an
operand. This flag indicates error such as those produced by
taking the square root of a negative number.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 15

CONTROL
REGISTER

Control register selects precision, rounding control, infinity
control.

It also masks an unmasks the exception bits that correspond to
the rightmost Six bits of status register.

Instruction FLDCW is used to load the value into the control
register.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 16

Control Register

DM IMZMOMUMPMPCRCIC

015

• IC Infinity control
• RC Rounding control
• PC Precision control
• PM Precision control
• UM Underflow mask
• OM Overflow mask
• ZM Division by zero mask
• DM Denormalized operand mask
• IM Invalid operand mask

M. Krishna Kumar MAM/M7/MKK18/V1/2004 17

IC –Infinity control selects
either affine or projective
infinity. Affine allows
positive and negative
infinity, while projective
assumes infinity
is unsigned.

RC –Rounding control
determines the type of
rounding.

INFINITY CONTROL
0 = Projective
1 = Affine

ROUNDING CONTROL
00=Round to nearest or even
01=Round down towards minus infinity
10=Round up towards plus infinity
11=Chop or truncate towards zero

M. Krishna Kumar MAM/M7/MKK18/V1/2004 18

PC- Precision control sets
the precision of he result as
define in table

Exception Masks – It
Determines whether the
error indicated by the
exception affects the error
bit in the status register. If a
logic1 is placed in one of
the exception control bits,
corresponding status register
bit is masked off.

PRECISION CONTROL

00=Single precision (short)
01=Reserved
10=Double precision (long)
11=Extended precision
(temporary)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 19

Numeric Execution
Unit

This performs all operations that access and manipulate the
numeric data in the coprocessor’s registers.

Numeric registers in NUE are 80 bits wide.

NUE is able to perform arithmetic, logical and transcendental
operations as well as supply a small number of mathematical
constants from its on-chip ROM.

Numeric data is routed into two parts ways
a 64 bit mantissa bus and

a 16 bit sign/exponent bus.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 20

Circuit Connection
for 8086 - 8087

8086 CPU

8087

8086

BUS
INTER-
FACING
COMPO-
NENTS

INTR

CLK
____ ____

RQ/GT1

QS0 QS1

TEST

BUSYQS0 QS1
____ _____

RQ/GT0

CLK

INT

CLK

8284A

CLICK

GENERATOR

8259A

PIC

INT

IRn

____ _____

RQ/GT1

Multi

master
System

bus

Multi

master
local

bus

M. Krishna Kumar MAM/M7/MKK18/V1/2004 21

Multiplexed address-data bus lines are connected directly
from the 8086 to 8087.
The status lines and the queue status lines connected directly
from 8086 to 8087. __ ___

The Request/Grant signal RQ/GT0 of 8087 is connected to
___ ___

RQ/GT1 of 8086. ______

BUSY signal 8087 is connected to TEST pin of 8086.
Interrupt output INT of the 8087 to NMI input of 8086. This
intimates an error condition.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 22

The main purpose of the circuitry between the INT output of
8087 and the NMI input is to make sure that an NMI signal is
not present upon reset, to make it possible to mask NMI input
and to make it possible for other devices to cause an NMI
interrupt.

BHE pin is connected to the system BHE line to enable the
upper bank of memory.

The RQ/GT1 input is available so that another coprocessor such
as 8089 I/O processor can be connected and function in parallel
with the 8087.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 23

One type of Cooperation between the two
processors that you need to know about it is how the 8087
transfers data between memory and its internal registers.

When 8086 reads an 8087 instruction that needs data from
memory or wants to send data to memory, the 8086 sends out
the memory address code in the instruction and sends out the
appropriate memory read or memory write signal to transfer a
word of data.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 24

In the case of memory read, the addressed word will be kept
on the data bus by the memory. The 8087 then simply reads
the word of data bus. The 8086 ignores this word .If the 8087
only needs this one word of data, it can then go on and
executes its instruction.

Some 8087 instructions need to read in or write out up to 80-
bit word. For these cases 8086 outputs the address of the first
data word on the address bus and outputs the appropriate
control signal.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 25

The 8087 reads the data word on the data bus by memory or
writes a data word to memory on the data bus. The 8087 grabs
the 20-bit physical address that was output by the 8086.To
transfer additional words it needs to/from memory, the 8087
then takes over the buses from 8086.
To take over the bus, the 8087 sends out a low-going pulse on
___ ____

RQ/GT0 pin. The 8086 responds to this by sending another low
____ ____

going pulse back to the RQ/GT0 pin of 8087 and by floating its
buses.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 26

The 8087 then increments the address it grabbed during the
first transfer and outputs the incremented address on the
address bus. When the 8087 output a memory read or memory
write signal, another data word will be transferred to or from
the 8087.

The 8087 continues the process until it has transferred all the
data words required by the instruction to/from memory.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 27

When the 8087 is using the buses for its data transfer, it
____ ___

sends another low-going pulse out on its RQ/ GT0 pin to
8086 to know it can have the buses back again.

The next type of the synchronization between the host
processor and the coprocessor is that required to make sure the
8086 hast does not attempt to execute the next instruction before
the 8087 has completed an instruction.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 28

Taking one situation, in the case where the 8086 needs the data
produced by the execution of an 8087 instruction to carry out
its next instruction.
In the instruction sequence for example the 8087 must
complete the FSTSW STATUS instruction before the 8086
will have the data it needs to execute the

MOV AX , STATUS instruction.
Without some mechanism to make the 8086 wait until the
8087 completes the FSTSW instruction, the 8086 will go on
and execute the MOV AX , STATUS with erroneous data .
We solve this problem by connecting the 8087 BUSY output
to the TEST pin of the 8086 and putting on the WAIT
instruction in the program.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 29

While 8087 is executing an instruction it asserts its BUSY pin
high. When it is finished with an instruction, the 8087 will
drop its BUSY pin low. Since the BUSY pin from 8087 is
connected to the TEST pin 8086 the processor can check its
pin of 8087 whether it finished it instruction or not.

You place the 8086 WAIT instruction in your program after
the 8087 FSTSW instruction .When 8086 executes the WAIT
instruction it enters an internal loop where it repeatedly checks
the logic level on the TEST input. The 8086 will stay in this
loop until it finds the TEST input asserted low, indicating the
8087 has completed its instruction. The 8086 will then exit the
internal loop, fetch and execute the next instruction.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 30

FSTSW STATUS ;copy 8087 status word to memory
MOV AX, STATUS ;copy status word to AX to check

; bits

(a)

In this set of instructions we are not using WAIT instruction.
Due to this the flow of execution of command will takes place
continuously even though the previous instruction had not
finished it’s completion of its work .so we may lost data .

Example

M. Krishna Kumar MAM/M7/MKK18/V1/2004 31

FSTSW STATUS ;copy 8087 status word to memory
FWAIT ;wait for 8087 to finish before-

; doing next 8086 instruction
MOV AX,STATUS ;copy status word to AX to check

; bits

(b)

In this code we are adding up of FWAIT instruction so that it
will stop the execution of the command until the above
instruction is finishes it’s work .so that you are not loosing
data and after that you will allow to continue the execution of
instructions.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 32

Another case where you need synchronization of the processor
and the coprocessor is the case where a program has several
8087 instructions in sequence.
The 8087 are executed only one instruction at a time so you
have to make sure that 8087 has completed one instruction
before you allow the 8086 to fetch the next 8087 instruction
from memory. ________
Here again you use the BUSY-TEST connection and the
FWAIT instruction to solve the problem. If you are hand
coding, you can just put the 8086 WAIT(FWAIT) instruction
after each instruction to make sure that instruction is
completed before going on to next.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 33

If you are using the assembler which accepts 8087 mnemonics,
the assembler will automatically insert the 8-bit code for the
WAIT instruction ,10011011 binary (9BH), as the first byte of
the code for 8087 instruction.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 34

INTERFACING
Multiplexed address-data bus lines are connected directly
from the 8086 to 8087.
The status lines and the queue status lines connected directly
from 8086 to 8087. __ ___
The Request/Grant signal RQ/GT0 of 8087 is connected to

___ __
RQ/GT1 of 8086. ______

BUSY signal 8087 is connected to TEST pin of 8086.
Interrupt output INT of the 8087 to NMI input of 8086. This
intimates an error condition. ______
A WAIT instruction is passed to keep looking at its TEST pin,
until it finds pin Low to indicates that the 8087 has completed
the computation.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 35

SYNCHRONIZATION must be established between the
processor and coprocessor in two situations.

a) The execution of an ESC instruction that require the
participation of the NUE must not be initiated if the NUE has
not completed the execution of the previous instruction.

b) When a processor instruction accesses a memory
location that is an operand of a previous coprocessor
instruction .In this case CPU must synchronize with NPX to
ensure that it has completed its instruction.

Processor WAIT instruction is provided.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 36

Exception Handling

The 8087 detects six different types of exception conditions
that occur during instruction execution. These will cause an
interrupt if unmasked and interrupts are enabled.

1) INVALID OPERATION
2) OVERFLOW
3) ZERO DIVISOR
4) UNDERFLOW
5) DENORMALIZED OPERAND
6) INEXACT RESULT

M. Krishna Kumar MAM/M7/MKK18/V1/2004 37

Data Types

Internally, all data operands are converted to the 80-bit
temporary real format.

We have 3 types.

• Integer data type
• Packed BCD data type
• Real data type

M. Krishna Kumar MAM/M7/MKK18/V1/2004 38

Coprocessor data
types

Coprocessor Data Types

Integer Packed BCD Real

Word Short Long Short Long Temporary

M. Krishna Kumar MAM/M7/MKK18/V1/2004 39

• Word integer 2 bytes

• Short integer 4 bytes

• Long integer 8 bytes

Integer Data Type

Magnitude

Magnitude

MagnitudeS
015

S
031

0
S

63

M. Krishna Kumar MAM/M7/MKK18/V1/2004 40

Packed BCD

• Packed BCD 10 bytes

S 0 d17 d0d1

0727879

M. Krishna Kumar MAM/M7/MKK18/V1/2004 41

Real data type

• Short real 4 bytes 178.625 decimal

= 4332A000h

• Long real 8 bytes

= 4066540000000000h

• Temporary real 10 bytes

= 4006B2A0000000000000h

FES
02331

0
FES

FES
0516263

79 6378

30

M. Krishna Kumar MAM/M7/MKK18/V1/2004 42

Example

Converting a decimal number into a Floating-point number.

1) Converting the decimal number into binary form.
2) Normalize the binary number
3) Calculate the biased exponent.
4) Store the number in the floating-point format.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 43

Example

Step Result

1 100.25
2 1100100.01 = 1.10010001 * 26

3 110+01111111=10000101
4 Sign = 0

Exponent =10000101

• In step 3 the biased
exponent is the exponent a
26 or 110,plus a bias of
01111111(7FH) ,single
precision no use 7F and
double precision no use
3FFFH.

• IN step 4 the information
found in prior step is
combined to form the
floating point no.

Significand =
10010001000000000000000

M. Krishna Kumar MAM/M7/MKK18/V1/2004 44

INSTRUCTION
SET

The 8087 instruction mnemonics begins with the letter F
which stands for Floating point and distinguishes from 8086.

These are grouped into Four functional groups.

The 8087 detects an error condition usually called an
exception when it executing an instruction it will set the bit in
its Status register.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 45

Types

I. DATA TRANSFER INSTRUCTIONS.

II. ARITHMETIC INSTRUCTIONS.

III. COMPARE INSTRUCTIONS.

IV. TRANSCENDENTAL INSTRUCTIONS.
(Trigonometric and Exponential)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 46

I. Data Transfers
Instructions

REAL TRANSFER
FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

INTEGER TRANSFER
FILD Load integer
FIST Store integer
FISTP Store integer and pop

M. Krishna Kumar MAM/M7/MKK18/V1/2004 47

PACKED DECIMAL TRANSFER(BCD)

FBLD Load BCD

FBSTP Store BCD and pop

M. Krishna Kumar MAM/M7/MKK18/V1/2004 48

Example
FLD Source- Decrements the stack pointer by one and copies
a real number from a stack element or memory location to the
new ST.

• FLD ST(3) ;Copies ST(3) to ST.
• FLD LONG_REAL[BX] ;Number from memory

;copied to ST.
FLD Destination- Copies ST to a specified stack position or
to a specified memory location .

• FST ST(2) ;Copies ST to ST(2),and
;increment stack pointer.

• FST SHORT_REAL[BX] ;Copy ST to a memory at a
;SHORT_REAL[BX]

M. Krishna Kumar MAM/M7/MKK18/V1/2004 49

FXCH Destination – Exchange the contents of ST with the
contents of a specified stack element.

• FXCH ST(5) ;Swap ST and ST(5)
FILD Source – Integer load. Convert integer number from
memory to temporary-real format and push on 8087 stack.

• FILD DWORD PTR[BX] ;Short integer from memory at
; [BX].

FIST Destination- Integer store. Convert number from ST to
integer and copy to memory.

• FIST LONG_INT ;ST to memory locations named
;LONG_INT.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 50

FISTP Destination-Integer store and pop. Identical to FIST
except that stack pointer is incremented after copy.
FBLD Source- Convert BCD number from memory to
temporary- real format and push on top of 8087 stack.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 51

II. Arithmetic
Instructions.

Four basic arithmetic functions:
Addition, Subtraction, Multiplication, and

Division.

Addition

FADD Add real
FADDP Add real and pop
FIADD Add integer

M. Krishna Kumar MAM/M7/MKK18/V1/2004 52

Subtraction

FSUB Subtract real
FSUBP Subtract real and pop
FISUB Subtract integer
FSUBR Subtract real reversed
FSUBRP Subtract real and pop
FISUBR Subtract integer reversed

M. Krishna Kumar MAM/M7/MKK18/V1/2004 53

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Multiply integer

M. Krishna Kumar MAM/M7/MKK18/V1/2004 54

Division

FDIV Division real
FDIVP Division real and pop
FIDIV Division integer
FDIVR Division real reversed
FDIVRP Division real reversed and pop
FIDIVR Division integer reversed

M. Krishna Kumar MAM/M7/MKK18/V1/2004 55

Advanced

FABS Absolute value
FCHS Change sign
FPREM Partial remainder
FPRNDINT Round to integer
FSCALE Scale
FSQRT Square root
FXTRACT Extract exponent and mantissa.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 56

FADD – Add real from specified source to specified destination
Source can be a stack or memory location. Destination must be
a stack element. If no source or destination is specified, then ST
is added to ST(1) and stack pointer is incremented so that the
result of addition is at ST.

• FADD ST(3), ST ;Add ST to ST(3), result in ST(3)
• FADD ST,ST(4) ;Add ST(4) to ST, result in ST.
• FADD ;ST + ST(1), pop stack result at ST
• FADDP ST(1) ;Add ST(1) to ST. Increment stack

;pointer so ST(1) become ST.
• FIADD Car_Sold ;Integer number from memory + ST

Example

M. Krishna Kumar MAM/M7/MKK18/V1/2004 57

FSUB - Subtract the real number at the specified source from
the real number at the specified destination and put the result in
the specified destination.

• FSUB ST(2), ST ;ST(2)=ST(2) – ST.
• FSUB Rate ;ST=ST – real no from memory.
• FSUB ;ST=(ST(1) – ST)

FSUBP - Subtract ST from specified stack element and put
result in specified stack element .Then increment the pointer by
one.

• FSUBP ST(1) ;ST(1)-ST. ST(1) becomes new ST
FISUB – Integer from memory subtracted from ST, result in
ST.

• FISUB Cars_Sold ;ST becomes ST – integer from
;memory

M. Krishna Kumar MAM/M7/MKK18/V1/2004 58

III. Compare
Instructions.

Comparison

FCOM Compare real
FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Compare integer
FICOMP Compare integer and pop
FTST Test ST against +0.0
FXAM Examine ST

M. Krishna Kumar MAM/M7/MKK18/V1/2004 59

Transcendental

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x - 1
FYL2X Y log2X
FYL2XP1 Y log2(X+1)

IV. Transcendental Instruction.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 60

FPTAN – Compute the values for a ratio of Y/X for an angle
in ST. The angle must be in radians, and the angle must be in
the range of 0 < angle < π/4.
F2XM1 – Compute Y=2x-1 for an X value in ST. The result Y
replaces X in ST. X must be in the range 0≤X≤0.5.
FYL2X - Calculate Y(LOG2X).X must be in the range of

0 < X < ∞ any Y must be in the range -∞<Y<+∞.
FYL2XP1 – Compute the function Y(LOG2(X+1)).This
instruction is almost identical to FYL2X except that it gives
more accurate results when compute log of a number very
close to one.

Example

M. Krishna Kumar MAM/M7/MKK18/V1/2004 61

Constant
Instructions.

Load Constant Instruction

FLDZ Load +0.0
FLDI Load+1.0
FLDPI Load π
FLDL2T Load log210
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

M. Krishna Kumar MAM/M7/MKK18/V1/2004 62

ALGORITHM

To calculate x to the power of y

• Load base, power.
• Compute (y)*(log2 x)
• Separate integer(i) ,fraction(f) of a real number
• Divide fraction (f) by 2
• Compute (2

f/2) * (2
f/2)

• xy = (2
x) * (2

y)

M. Krishna Kumar MAM/M7/MKK18/V1/2004 63

Program

Program to calculate x to the
power of y

M. Krishna Kumar MAM/M7/MKK18/V1/2004 64

.MODEL SMALL

.DATA
x Dq 4.567 ;Base
y Dq 2.759 ;Power
temp DD
temp1 DD
temp2 DD ;final real result
tempint DD
tempint1 DD ;final integer result
two DW
diff DD
trunc_cw DW 0fffh

M. Krishna Kumar MAM/M7/MKK18/V1/2004 65

.STACK 100h

.CODE
start: mov ax,@DATA ;init data segment

mov ds,ax

load: fld y ;load the power
fld x ;load the base

comput: fyl2x ;compute (y * log2(x))
fst temp ;save the temp result

M. Krishna Kumar MAM/M7/MKK18/V1/2004 66

trunc: fldcw trunc_cw ;set truncation command
frndint
fld temp ;load real number of fyl2x
fist tempint ;save integer after

;truncation
fld temp ;load the real number

getfrac: fisub tempint ;subtract the integer
fst diff ;store the fraction

M. Krishna Kumar MAM/M7/MKK18/V1/2004 67

fracby2: fidiv two ;divide the fraction by 2

twopwrx: f2xm1 ;calculate the 2 to the
;power fraction

fst temp1 ;minus 1 and save the result
fld1 ;load1
fadd ;add 1 to the previous result
fst temp1 ;save the result

M. Krishna Kumar MAM/M7/MKK18/V1/2004 68

sqfrac: fmul st(0),st(0) ;square the result as fraction
fst temp1 ;was halved and save the

;result
fild tempint ;save the integer portion
fxch ;interchange the integer

;and power of fraction.

M. Krishna Kumar MAM/M7/MKK18/V1/2004 69

scale: fscale ;scale the result in real and
;integer

fst temp2 ;in st(1) and store
fist tempint1 ;save the final result in real and

;integer

over: mov ax,4c00h ;exit to dos
int 21h
end start

Contents

AArrcchhiitteeccttuurree ooff 88008877

Data types

IInntteerrffaacciinngg

Instructions and programming

Overview

Each processor in the 80x86 family has a corresponding coprocessor with which it is
compatible.

Math Coprocessor is known as NPX,NDP,FUP.
 Numeric processor extension (NPX),
 Numeric data processor (NDP),
 Floating point unit (FUP).

Compatible Processor and Coprocessor

 Processors

1. 8086 & 8088
2. 80286
3. 80386DX
4. 80386SX
5. 80486DX
6. 80486SX

 Coprocessors

1. 8087
2. 80287,80287XL
3. 80287,80387DX
4. 80387SX
5. It is Inbuilt
6. 80487SX

Pin Diagram of 8087

AArrcchhiitteeccttuurree ooff 88008877

Control Unit

Execution Unit

20 GND

19
18

CLK

NC

NC 17
16

GND
AD14

AD13

AD12

AD11

AD10

AD9

AD8
AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

15
14

13

12
11

1
2
3
4
5
6
7
8

9
10

RESET

READY

BUSY

QS1

Vcc
AD15

A16/S3

A17/S4

A18/S5

RQ/GT1

INT

RQ/GT0

NC

NC _
S2 __

S1

QS0

21

22
23

24
25
26
27
28
29

30

40
39
38
37
36
35
34
33
32

31

__
S0

8087
NPX

(A14)

(A13)
(A12)
(A11)
(A10)
(A9)
(A8)

8-register stack, each has 80 bits
0 79

Vcc

+5V

0

4 MSB of operand address 0

16 LSB of operand address

Floating point arithmetic module

Status Register 16 bit

Control Register

16 LBS of instruction address

11 LSB of op code 0 4MSB inst address

Bus
tracking
control
logic,
instruction
queue

Ready

Reset

Busy

CLK
INT

QS1-QS0

A19/S6 __ A16/S3

AD15 - AD0

to

____ ____
RQ/GT1

____ ____
RQ/GT0

BHE/S7

vss

TAG

TAG 7

TAG
register

Control word

Control Unit

Status word

8 Register Stack Tag

word

0

7

Exception
pointer

Addressing
bus tracking

Data
buffer

Exponent
Module

Operand
queue

Micro control
unit

Programm
able shifter

Arithmetic
module

temporary
register

Numeric execution unit

Address

Status

Data

 interface

80 Bits

16

16

16

64

68

Exponent bus Fraction bus

Control Unit

Control unit: To synchronize the operation of the coprocessor and the processor.

This unit has a Control word and Status word and Data Buffer

If instruction is an ESCape (coprocessor) instruction, the coprocessor executes it, if not
the microprocessor executes.

Status register reflects the over all operation of the coprocessor.

Status Register

• C3-C0 Condition code bits
• TOP Top-of-stack (ST)
• ES Error summary
• PE Precision error
• UE Under flow error
• OE Overflow error
• ZE Zero error
• DE Denormalized error
• IE Invalid error
• B Busy bit

B-Busy bit indicates that coprocessor is busy executing a task. Busy can be tested by

examining the status or by using the FWAIT instruction. Newer coprocessor
automatically synchronize with the microprocessor, so busy flag need not be tested
before performing additional coprocessor tasks.

C3-C0 Condition code bits indicates conditions about the coprocessor.

TOP- Top of the stack (ST) bit indicates the current register address as the top of the
stack.

ES-Error summary bit is set if any unmasked error bit (PE, UE, OE, ZE, DE, or IE) is
set. In the 8087 the error summary is also caused a coprocessor interrupt.

B C3 ST C2 C1 C0 ES PE UE OE ZE DE IE

0 15

PE- Precision error indicates that the result or operand executes selected precision.

UE-Under flow error indicates the result is too large to be represent with the current

precision selected by the control word.

OE-Over flow error indicates a result that is too large to be represented. If this error is
masked, the coprocessor generates infinity for an overflow error.

ZE-A Zero error indicates the divisor was zero while the dividend is a non-infinity or
non-zero number.

DE-Denormalized error indicates at least one of the operand is denormalized.

IE-Invalid error indicates a stack overflow or underflow, indeterminate from (0/0,0,-0,
etc) or the use of a NAN as an operand. This flag indicates error such as those produced
by taking the square root of a negative number.

CONTROL REGISTER

Control register selects precision, rounding control, infinity control.

It also masks an unmasks the exception bits that correspond to the rightmost Six bits of
status register.

Instruction FLDCW is used to load the value into the control register.

Control Register

•IC Infinity control
•RC Rounding control
•PC Precision control
•PM Precision control
•UM Underflow mask
•OM Overflow mask
•ZM Division by zero mask
•DM Denormalized operand mask
•IM Invalid operand mask

DM IM ZM OM

UM PM PC RC IC

0 15

IC –Infinity control selects either affine or projective infinity. Affine allows positive

and negative infinity, while projective assumes infinity is unsigned.

INFINITY CONTROL
0 = Projective
1 = Affine

RC –Rounding control determines the type of rounding.

ROUNDING CONTROL
00=Round to nearest or even
01=Round down towards minus infinity
10=Round up towards plus infinity
11=Chop or truncate towards zero

PC- Precision control sets the precision of he result as define in table

PRECISION CONTROL

00=Single precision (short)
01=Reserved
10=Double precision (long)
11=Extended precision (temporary)

Exception Masks – It Determines whether the error indicated by the exception affects
the error bit in the status register. If a logic1 is placed in one of the exception control bits,
corresponding status register bit is masked off.

Numeric Execution Unit

This performs all operations that access and manipulate the numeric data in the
coprocessor’s registers.

Numeric registers in NUE are 80 bits wide.

NUE is able to perform arithmetic, logical and transcendental operations as well as
supply a small number of mathematical constants from its on-chip ROM.

Numeric data is routed into two parts ways a 64 bit mantissa bus and
a 16 bit sign/exponent bus.

 Multiplexed address-data bus lines are connected directly from the 8086 to 8087.
 The status lines and the queue status lines connected directly from 8086 to 8087.

__ ___
 The Request/Grant signal RQ/GT0 of 8087 is connected to

 ___ ___
 RQ/GT1 of 8086.

 BUSY signal 8087 is connected to TEST pin of 8086.

 Interrupt output INT of the 8087 to NMI input of 8086. This intimates an error
condition.

The main purpose of the circuitry between the INT output of 8087 and the NMI input is

to make sure that an NMI signal is not present upon reset, to make it possible to mask
NMI input and to make it possible for other devices to cause an NMI interrupt.

BHE pin is connected to the system BHE line to enable the upper bank of memory.

The RQ/GT1 input is available so that another coprocessor such as 8089 I/O processor
can be connected and function in parallel with the 8087.

 One type of Cooperation between the two processors that you need
to know about it is how the 8087 transfers data between memory and its internal registers.

8086 CPU

8087

8086
BUS
INTER-
FACING
COMPO-
NENTS

INTR

CLK
____ ____
RQ/GT1

QS0 QS1

TEST

BUSY QS0 QS1
____ _____
RQ/GT0

CLK

INT

CLK

8284A
CLICK
GENERATOR

8259A
PIC

INT

IRn

____ _____
RQ/GT1

Multi
master
System
 bus

Multi
master
local
bus

When 8086 reads an 8087 instruction that needs data from memory or wants to send
data to memory, the 8086 sends out the memory address code in the instruction and sends
out the appropriate memory read or memory write signal to transfer a word of data.

In the case of memory read, the addressed word will be kept on the data bus by the
memory. The 8087 then simply reads the word of data bus. The 8086 ignores this word
.If the 8087 only needs this one word of data, it can then go on and executes its
instruction.

Some 8087 instructions need to read in or write out up to 80-bit word. For these cases
8086 outputs the address of the first data word on the address bus and outputs the
appropriate control signal.

The 8087 reads the data word on the data bus by memory or writes a data word to
memory on the data bus. The 8087 grabs the 20-bit physical address that was output by
the 8086.To transfer additional words it needs to/from memory, the 8087 then takes over
the buses from 8086.

To take over the bus, the 8087 sends out a low-going pulse on
 ___ ____

RQ/GT0 pin. The 8086 responds to this by sending another low
 ___ ____

 going pulse back to the RQ/GT0 pin of 8087 and by floating its buses.

The 8087 then increments the address it grabbed during the first transfer and outputs
the incremented address on the address bus. When the 8087 output a memory read or
memory write signal, another data word will be transferred to or from the 8087.

The 8087 continues the process until it has transferred all the data words required by
the instruction to/from memory.

When the 8087 is using the buses for its data transfer, it
 ____ ___
 sends another low-going pulse out on its RQ/ GT0 pin to
 8086 to know it can have the buses back again.

 The next type of the synchronization between the host
processor and the coprocessor is that required to make sure the
8086 hast does not attempt to execute the next instruction before
the 8087 has completed an instruction.

Taking one situation, in the case where the 8086 needs the data produced by the
execution of an 8087 instruction to carry out its next instruction.

In the instruction sequence for example the 8087 must complete the FSTSW

STATUS instruction before the 8086 will have the data it needs to execute the
 MOV AX , STATUS instruction.

Without some mechanism to make the 8086 wait until the 8087 completes the FSTSW
instruction, the 8086 will go on and execute the MOV AX , STATUS with erroneous
data .

We solve this problem by connecting the 8087 BUSY output to the TEST pin of the
8086 and putting on the WAIT instruction in the program.

While 8087 is executing an instruction it asserts its BUSY pin high. When it is finished
with an instruction, the 8087 will drop its BUSY pin low. Since the BUSY pin from 8087
is connected to the TEST pin 8086 the processor can check its pin of 8087 whether it
finished it instruction or not.

You place the 8086 WAIT instruction in your program after the 8087 FSTSW
instruction .When 8086 executes the WAIT instruction it enters an internal loop where it
repeatedly checks the logic level on the TEST input. The 8086 will stay in this loop until
it finds the TEST input asserted low, indicating the 8087 has completed its instruction.
The 8086 will then exit the internal loop, fetch and execute the next instruction.

Example

FSTSW STATUS ;copy 8087 status word to memory
MOV AX, STATUS ;copy status word to AX to check
 ; bits

 (a)

In this set of instructions we are not using WAIT instruction. Due to this the flow of
execution of command will takes place continuously even though the previous
instruction had not finished it’s completion of its work .so we may lost data .

FSTSW STATUS ;copy 8087 status word to memory
FWAIT ;wait for 8087 to finish before-
 ; doing next 8086 instruction
MOV AX,STATUS ;copy status word to AX to check
 ; bits

 (b)

In this code we are adding up of FWAIT instruction so that it will stop the execution of
the command until the above instruction is finishes it’s work .so that you are not loosing
data and after that you will allow to continue the execution of instructions.

Another case where you need synchronization of the processor and the coprocessor is
the case where a program has several 8087 instructions in sequence.

 The 8087 are executed only one instruction at a time so you have to make sure that
8087 has completed one instruction before you allow the 8086 to fetch the next 8087
instruction from memory. ________

Here again you use the BUSY-TEST connection and the FWAIT instruction to solve
the problem. If you are hand coding, you can just put the 8086 WAIT(FWAIT)
instruction after each instruction to make sure that instruction is completed before going
on to next.

If you are using the assembler which accepts 8087 mnemonics, the assembler will
automatically insert the 8-bit code for the WAIT instruction ,10011011 binary (9BH), as
the first byte of the code for 8087 instruction.

INTERFACING

Multiplexed address-data bus lines are connected directly from the 8086 to 8087.
The status lines and the queue status lines connected directly from 8086 to 8087.

 __ ___
The Request/Grant signal RQ/GT0 of 8087 is connected to

 ___ __
 RQ/GT1 of 8086.

BUSY signal 8087 is connected to TEST pin of 8086.

Interrupt output INT of the 8087 to NMI input of 8086. This intimates an error
condition. ______

A WAIT instruction is passed to keep looking at its TEST pin, until it finds pin Low to
indicates that the 8087 has completed the computation.

SYNCHRONIZATION must be established between the processor and coprocessor in
two situations.

 a) The execution of an ESC instruction that require the participation of the NUE
must not be initiated if the NUE has not completed the execution of the previous
instruction.

 b) When a processor instruction accesses a memory location that is an operand of
a previous coprocessor instruction .In this case CPU must synchronize with NPX to
ensure that it has completed its instruction.
 Processor WAIT instruction is provided.

Exception Handling

The 8087 detects six different types of exception conditions that occur during
instruction execution. These will cause an interrupt if unmasked and interrupts are
enabled.

1)INVALID OPERATION
2)OVERFLOW
3)ZERO DIVISOR
4)UNDERFLOW
5)DENORMALIZED OPERAND
6)INEXACT RESULT

Data Types

Internally, all data operands are converted to the 80-bit temporary real format.

We have 3 types.

•Integer data type
•Packed BCD data type
•Real data type

Coprocessor data types

Integer Data Type

Packed BCD

Real data type

Example

Converting a decimal number into a Floating-point number.

 1) Converting the decimal number into binary form.
 2) Normalize the binary number
 3) Calculate the biased exponent.
 4) Store the number in the floating-point format.

Example

Step Result

1 100.25
21100100.01 = 1.10010001 * 26
3110+01111111=10000101
4 Sign = 0
 Exponent =10000101
Significand = 10010001000000000000000

•In step 3 the biased exponent is the exponent a 26 or 110,plus a bias of 01111111(7FH)
,single precision no use 7F and double precision no use 3FFFH.
•IN step 4 the information found in prior step is combined to form the floating point no.

INSTRUCTION SET

The 8087 instruction mnemonics begins with the letter F which stands for Floating
point and distinguishes from 8086.

These are grouped into Four functional groups.

The 8087 detects an error condition usually called an exception when it executing an
instruction it will set the bit in its Status register.

Types

I. DATA TRANSFER INSTRUCTIONS.

II. ARITHMETIC INSTRUCTIONS.

III. COMPARE INSTRUCTIONS.

IV. TRANSCENDENTAL INSTRUCTIONS.
 (Trigonometric and Exponential)

Data Transfers Instructions

 REAL TRANSFER
 FLD Load real
 FST Store real
 FSTP Store real and pop
 FXCH Exchange registers

 INTEGER TRANSFER
 FILD Load integer
 FIST Store integer
 FISTP Store integer and pop

PACKED DECIMAL TRANSFER(BCD)

 FBLD Load BCD

 FBSTP Store BCD and pop

Example

FLD Source- Decrements the stack pointer by one and copies a real number from a
stack element or memory location to the new ST.

•FLD ST(3) ;Copies ST(3) to ST.
•FLD LONG_REAL[BX] ;Number from memory
 ;copied to ST.

FLD Destination- Copies ST to a specified stack position or to a specified memory
location .

•FST ST(2) ;Copies ST to ST(2),and
 ;increment stack pointer.
•FST SHORT_REAL[BX] ;Copy ST to a memory at a
 ;SHORT_REAL[BX]

FXCH Destination – Exchange the contents of ST with the contents of a specified
stack element.

•FXCH ST(5) ;Swap ST and ST(5)

FILD Source – Integer load. Convert integer number from memory to temporary-real
format and push on 8087 stack.

•FILD DWORD PTR[BX] ;Short integer from memory at [BX].

FIST Destination- Integer store. Convert number from ST to integer and copy to
memory.

•FIST LONG_INT ;ST to memory locations named LONG_INT.

FISTP Destination-Integer store and pop. Identical to FIST except that stack pointer is
incremented after copy.

FBLD Source- Convert BCD number from memory to temporary- real format and
push on top of 8087 stack.

Arithmetic Instructions.

Four basic arithmetic functions:

 Addition, Subtraction, Multiplication, and
 Division.

Addition

 FADD Add real
 FADDP Add real and pop
 FIADD Add integer

Subtraction

 FSUB Subtract real
 FSUBP Subtract real and pop
 FISUB Subtract integer

 FSUBR Subtract real reversed
 FSUBRP Subtract real and pop
 FISUBR Subtract integer reversed

Multiplication

 FMUL Multiply real
 FMULP Multiply real and pop
 FIMUL Multiply integer

Advanced

 FABS Absolute value
 FCHS Change sign
 FPREM Partial remainder
 FPRNDINT Round to integer
 FSCALE Scale
 FSQRT Square root
 FXTRACT Extract exponent and mantissa.

Example

FADD – Add real from specified source to specified destination Source can be a stack
or memory location. Destination must be a stack element. If no source or destination is
specified, then ST is added to ST(1) and stack pointer is incremented so that the result of
addition is at ST.
•FADD ST(3), ST ;Add ST to ST(3), result in ST(3)
•FADD ST,ST(4) ;Add ST(4) to ST, result in ST.
•FADD ;ST + ST(1), pop stack result at ST
•FADDP ST(1) ;Add ST(1) to ST. Increment stack
 ;pointer so ST(1) become ST.
•FIADD Car_Sold ;Integer number from memory + ST

FSUB - Subtract the real number at the specified source from the real number at the
specified destination and put the result in the specified destination.
•FSUB ST(2), ST ;ST(2)=ST(2) – ST.
•FSUB Rate ;ST=ST – real no from memory.
•FSUB ;ST=(ST(1) – ST)

FSUBP - Subtract ST from specified stack element and put result in specified stack
element .Then increment the pointer by one.
•FSUBP ST(1) ;ST(1)-ST. ST(1) becomes new ST

FISUB – Integer from memory subtracted from ST, result in ST.

•FISUB Cars_Sold ;ST becomes ST – integer from memory

Compare Instructions.

Comparison

 FCOM Compare real
 FCOMP Compare real and pop
 FCOMPP Compare real and pop twice
 FICOM Compare integer
 FICOMP Compare integer and pop
 FTST Test ST against +0.0
 FXAM Examine ST

Transcendental Instruction.

Transcendental

 FPTAN Partial tangent
 FPATAN Partial arctangent
 F2XM1 2x - 1
 FYL2X Y log2X
 FYL2XP1 Y log2(X+1)

Example

FPTAN – Compute the values for a ratio of Y/X for an angle in ST. The angle must be
in radians, and the angle must be in the range of 0 < angle < π/4. F2XM1 – Compute
Y=2x-1 for an X value in ST. The result Y replaces X in ST. X must be in the range
0≤X≤0.5.

FYL2X - Calculate Y(LOG2X).X must be in the range of 0 < X < ∞ any Y
must be in the range -∞<Y<+∞.

FYL2XP1 – Compute the function Y(LOG2(X+1)).This instruction is almost identical
to FYL2X except that it gives more accurate results when compute log of a number very
close to one.

Constant Instructions.

Load Constant Instruction
 FLDZ Load +0.0
 FLDI Load+1.0
 FLDPI Load π
 FLDL2T Load log210
 FLDL2E Load log2e
 FLDLG2 Load log102
 FLDLN2 Load loge2

ALGORITHM

 To calculate x to the power of y

•Load base, power.
•Compute (y)*(log2 x)
•Separate integer(i) ,fraction(f) of a real number
•Divide fraction (f) by 2
•Compute (2 f/2) * (2f/2)
•xy = (2x) * (2y)

Program:

Program to calculate x to the power of y

 .MODEL SMALL
 .DATA

 x Dq 4.567 ;Base
 y Dq 2.759 ;Power
 temp DD
 temp1 DD
 temp2 DD ;final real result
 tempint DD
 tempint1 DD ;final integer result
 two DW
 diff DD
 trunc_cw DW 0fffh

 .STACK 100h
 .CODE
start: mov ax, @DATA ;init data segment
 mov ds, ax
•
load: fld y ;load the power
 fld x ;load the base
•
comput: fyl2x ;compute (y * log2(x))
 fst temp ;save the temp result

 trunc: fldcw trunc_cw ;set truncation command
 frndint
 fld temp ;load real number of fyl2x
 fist tempint ;save integer after truncation
 fld temp ;load the real number
•
 getfrac: fisub tempint ;subtract the integer
 fst diff ;store the fraction

 fracby2: fidiv two ;divide the fraction by 2

twopwrx: f2xm1 ;calculate the 2 to the power fraction
 fst temp1 ;minus 1 and save the result
 fld1 ;load1
 fadd ;add 1 to the previous result
 fst temp1 ;save the result

sqfrac: fmul st(0),st(0) ;square the result as fraction
 fst temp1 ;was halved and save the result
 fild tempint ;save the integer portion

 fxch ;interchange the integer
 ;and power of fraction.

 scale: fscale ;scale the result in real and
 ;integer
 fst temp2 ;in st(1) and store
 fist tempint1 ;save the final result in real and integer

 over: mov ax,4c00h ;exit to dos
 int 21h
 end start

M. Krishna Kumar MAM/M5/LU13/V1/2004 1

MicrocontrollerMicrocontroller

Prof. M.Krishna Kumar

M. Krishna Kumar MAM/M5/LU13/V1/2004 2

•• IntroductionIntroduction
• Inside 8051• Inside 8051
• Instructions• Instructions
• Interfacing• Interfacing

ContentsContents

M. Krishna Kumar MAM/M5/LU13/V1/2004 3

IntroductionIntroduction

• Definition of a Microcontroller
• Difference with a Microprocessor
• Microcontroller is used where ever

M. Krishna Kumar MAM/M5/LU13/V1/2004 4

DefinitionDefinition

• It is a single chip

• Consists of Cpu, Memory

• I/O ports, timers and other peripherals

M. Krishna Kumar MAM/M5/LU13/V1/2004 5

DifferenceDifference

• It is a single chip
• Consists Memory,
• I/o ports

MICRO CONTROLLER MICRO PROCESSER
• It is a cpu
• Memory, I/O Ports to be

connected externally

MEMORY

I/O PORTS

CPU
CPU MEMORY

I/O PORTS

M. Krishna Kumar MAM/M5/LU13/V1/2004 6

• Small size
• Low cost
• Low power

Where everWhere ever

M. Krishna Kumar MAM/M5/LU13/V1/2004 7

ArchitectureArchitecture

• Harvard university

The Architecture given by Harvard University has the following
advantages:
1: Data Space and Program Space are distinct
2: There is no Data corruption or loss of data
Disadvantage is:
1: The circuitry is very complex.

M. Krishna Kumar MAM/M5/LU13/V1/2004 8

• 8 bit cpu
• 64k Program memory (4k on chip)
• 64k Data memory
• 128 Bytes on chip
• 32 I/O
• Two 16 bit timers
• Full duplex UART
• 6 Source/5 Vector interrupts with

two level priority levels
• On chip clock Oscillator.

FeaturesFeatures

M. Krishna Kumar MAM/M5/LU13/V1/2004 9

Block DiagramBlock Diagram

128 Bytes
RAM Timer 0

Timer 1

4 I/O portsBus Control

External Interrupts

Serial Port

Counter inputs

TXD RXDP0 P2 P1 P3
PSEN ALE

Interrupt
control

4k On chip flash ETC

CPU

OSC

M. Krishna Kumar MAM/M5/LU13/V1/2004 10

Memory ArchitectureMemory Architecture

EA=0
EXTERNAL

EA=1
INTERNAL

0000

PSEN
RD W

R

FFH:

00

INTERNAL

EXTERNAL

0000H
:

FFFFH
:

EXTERNAL

M. Krishna Kumar MAM/M5/LU13/V1/2004 11

SFR MapSFR Map

M. Krishna Kumar MAM/M5/LU13/V1/2004 12

Internal MemoryInternal Memory

Scratch Pad

Bit Memory

Bank 3 (R0-R7)

Bank 2 (R0-R7)

Bank 1 (R0-R7)

Bank 0 (R0-R7)

7FH

30H

20H

18H

10H

08H

00H

M. Krishna Kumar MAM/M5/LU13/V1/2004 13

Pin connectionsPin connections

M. Krishna Kumar MAM/M6/LU15/2004 1

ClassificationClassification
of Instructions of Instructions

INSTRUCTIONSINSTRUCTIONS

DATA TRANSFERDATA TRANSFER

BOOLEANBOOLEANBRANCHBRANCH

ARITHMETICARITHMETIC

LOGICALLOGICAL

M. Krishna Kumar MAM/M6/LU15/2004 2

Data transfer Instructions

• Mov A, Rn
• Mov A, Direct
• Mov A, @Ri
• Mov A, #Data8

• Mov Dptr, #Data16

M. Krishna Kumar MAM/M6/LU15/2004 3

Data transfer
Instructions contd

• Mov Rn, A
• Mov Rn, Direct
• Mov Rn, #Data8

• Mov Direct, A
• Mov Direct, Rn
• Mov Direct, #Data8

• Mov Direct, Direct

M. Krishna Kumar MAM/M6/LU15/2004 4

Data Transfer
Instructions contd

• Mov Direct, @Ri
• Mov Direct, # Data8

• Mov @Ri, A
• Mov @Ri, Direct
• Mov @Ri, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 5

Data Transfer
Instructions contd

• Movx A, @Ri
• Movx A, @Dptr
• Movx @Ri, A
• Movx @dptr, A
• Movc A, @A+Dptr
• Movc A, @A+Pc

M. Krishna Kumar MAM/M6/LU15/2004 6

Data transfer
Instructions contd

• Push Direct
• Pop Direct
• Xch A, Rn
• Xch A, Direct
• Xch A, @Ri
• Xchd A, @Ri

M. Krishna Kumar MAM/M6/LU15/2004 7

Boolean Instructions

• Clr C
• Clr Bit
• Setb C
• Setb Bit
• Cpl C
• Cpl Bit

M. Krishna Kumar MAM/M6/LU15/2004 8

Boolean
Instructions contd

• Anl C, Bit
• Anl C, /Bit
• Orl C, Bit
• Orl C, /Bit
• Mov C, Bit
• Mov Bit, C

M. Krishna Kumar MAM/M6/LU15/2004 9

Branch
Instructions contd

• Jc Reladdr
• Jnc Reladdr
• Jb Bit, Reladdr
• Jnb Bit, Reladdr
• Jbc Bit, Reladdr

M. Krishna Kumar MAM/M6/LU15/2004 10

Arithmetic Instructions

• Add A, Rn
• Add A, Direct
• Add A, @Ri
• Add A, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 11

Arithmetic
Instructions contd

• Addc A, Rn
• Addc A, Direct
• Addc A, @Ri
• Addc A, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 12

Arithmetic
Instructions contd

• Subb A, Rn
• Subb A, Direct
• Subb A, @Ri
• Subb A, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 13

Arithmetic
Instructions contd

• Inc A
• Inc Rn
• Inc Direct
• Inc @Ri
• Inc Dptr

M. Krishna Kumar MAM/M6/LU15/2004 14

Arithmetic
Instructions contd

• Dec A
• Dec Rn
• Dec Direct
• Dec @Ri

M. Krishna Kumar MAM/M6/LU15/2004 15

Arithmetic
Instructions contd

• Mul AB
• Div AB
• DA A

M. Krishna Kumar MAM/M6/LU15/2004 16

Logical Instructions

• Anl A, Rn
• Anl A, Direct
• Anl A, @Ri
• Anl A, #Data8

• Anl Direct, A
• Anl Direct, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 17

Logical
Instructions contd

• Orl A, Rn
• Orl A, Direct
• Orl A, @Ri
• Orl A, #Data8

• Orl Direct, A
• Orl Direct, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 18

Logical
Instructions contd

• Xrl A, Rn
• Xrl A, Direct
• Xrl A, @Ri
• Xrl A, #Data8

• Xrl Direct, A
• Xrl Direct, #Data8

M. Krishna Kumar MAM/M6/LU15/2004 19

Logical
Instructions contd

• Clr A
• Cpl A
• Rl A
• Rlc A
• Rr A
• Rrc A
• Swap A

M. Krishna Kumar MAM/M6/LU15/2004 20

Branch Instructions

• Acall Addr11
• Lcall Addr16
• Ret
• Reti
• Ajmp Addr11
• Ljmp Addr16
• Sjmp Reladdr

M. Krishna Kumar MAM/M6/LU15/2004 21

Branch Instructions

• Jmp @A+Dptr
• Jz Reladdr
• Jnz Reladdr

M. Krishna Kumar MAM/M6/LU15/2004 22

Branch
Instructions contd

• Cjne Rn, #Data, Reladdr
• Cjne @Ri, #Data, Reladdr
• Cjne A, #Data, Reladdr
• Cjne A, Direct, Reladdr

M. Krishna Kumar MAM/M6/LU15/2004 23

Branch
Instructions contd

• Djnz Rn, Reladdr
• Djnz Direct, Reladdr
• Nop

M. Krishna Kumar MAM/M7/LU18/V1/2004 1

RTC Interface

DS 1307

X1

X2

VCC

1

2

7

8

4

5

6

3

INTB\SQW
GND

BAT

SCL

SDAP1.0

P1.1

3.6V

89C51

32.768KHz

+

-

Vcc

10k 10k

M. Krishna Kumar MAM/M7/LU18/V1/2004 2

DS 1307 is a real time clock chip
Maintains real time clock once powered up Year,

Month, Day , Time in hours, Minutes and seconds can be
written into or read out serially

Has 56 bytes of data space to save or retrieve data
of importance like settings

Consumes very low power2or 3 uw @ 32.768KHz
with a backup battery of 2.5 to 3.6V

Has SDA, SCL pins to send data and clock
respectively

SDA, SCL are directly interfaced to I/O pins of 89C51

RTC Interface contd….

M. Krishna Kumar MAM/M7/LU18/V1/2004 3

Keyboard Interface-1

ROW1

ROW7

1

1

2

7486

+5V

P10
P11
P12
P13
P14
P15

8
9
C
5
1

2
3
4
5
6

COL-1
COL-2

COL-6

KEY MATRIX

3

KY CS

R0\

WR\

7408

2
19
5
16
6

15
9
12

3
18
4

17
7

14
8

18

1

11
EN

C1

74374

7430

7400

7486

INT114

Vcc

ROW0

P2.0

P2.7

8
9
C
5
1

M. Krishna Kumar MAM/M7/LU18/V1/2004 4

Outputs 8 bit row code (0FEH, 0FDH etc.,) on port0
Interrupts micro-controller when a key is pressed
Interrupt software to find which column and key is
pressed

Keyboard Interface-1 contd…

M. Krishna Kumar MAM/M7/LU18/V1/2004 5

Keyboard Interface -2

0 1 2
4 5 6

3
7

8 9 A B
C D E F

X4

X3

X2

X1

Y1

Y2

Y3

Y4

OE

Data Available

D--A

P1.7

P1.6

P1.5

ALE

RD

INT1

AD3-AD0

89C51
74F138 10uF

+

Vcc

A2

A1

A0

E3

E2

E1

O2

0.01uF

+

KBM74C922

4 bit

M. Krishna Kumar MAM/M7/LU18/V1/2004 6

74C922 is a 16 key encoder that performs keypad
scanning and de-bouncing
When key is pressed it outputs a 4 bit code
When interfaced to micro-controller, it reads the
code through its port pins
Has key De-bouncing and key mask features
It has a data available output that interrupts the
micro-controller
Interrupt software to find the key pressed

Keyboard Interface-2 contd…

M. Krishna Kumar MAM/M7/LU18/V1/2004 7

Keyboard Interface-3

5V

10Kohms each

X7

X6

X5

X4

X3

X2

X1

X0

inhibit

X

C

B

A

INT1

P1.5

P1.4

P1.3

P1.2

P1.1

P1.0A

B

C

74ALS138

MC14051 89C51

M. Krishna Kumar MAM/M7/LU18/V1/2004 8

The circuit interfaces 64 keys
It consists of 14051 a 8:1 multiplexer and 74138 a 3:8
decoder
When a key is pressed 89C51 is interrupted
The 3 bit input of multiplexer and 3 bit input of the
decoder gives the key code
which is read in the interrupt routine

Keyboard Interface-3 contd…

M. Krishna Kumar MAM/M7/LU18/V1/2004 9

Serial ADC Interface

89C511

P1.5

P1.6

P1.7

SCLK

CS

5V

Analog Input

ADC 1031

D0

CS

CCLK
GND

Vin

VREF

VCC

1 MHz

M. Krishna Kumar MAM/M7/LU18/V1/2004 10

ADC1031 from National semiconductor is a 10 bit ADC
with Serial interface
Conversion time is 13.7 us @ 3MHz.
Conversion starts as soon as CS is enabled
External clock 1MHz is connected to CCLK

Serial ADC Interface contd…

M. Krishna Kumar MAM/M7/LU18/V1/2004 11

Serial DAC Interface

+

+

REF

VOUT B

VOUT A

GND

SYNC

DIN

SCLK

VDD

10uF0.1uF 1K 1K

0.1uF

5V

P4.0

P4.1

P4.2

89C51 AD7703

VIN

74HC05

LM393A

LM393A

fail

Pass

M. Krishna Kumar MAM/M7/LU18/V1/2004 12

Serial DAC Interface contd…

2 x Vref x N
255

AD7303 is dual channel 8 bit DAC

Has 16 bit input registers, 8 bit for data and 8 bit for
control

Out put voltage =

Interface is shown to realize window detector

If the data is between upper limit and lower limit pass
LED glows else fail LED glows

M. Krishna Kumar MAM/M7/LU18/V1/2004 13

Battery Backup

Vcc of memory

Power supply
230Vac

Trickle-
Charge
Circuit

1N194
diode

10
K

+4.8 V
Ni-Cad battery
Varta Aafetronic
(100 mAh)

MAX690

+12Vdc +5Vdc

2

8 1

7
Reset

3

Vbatt

Vcc

Vout

Reset
Vss

Vcc of 89C51

M. Krishna Kumar MAM/M7/LU18/V1/2004 14

Max 690 is a battery switchover/reset generator chip
It provides a voltage thresh hold mechanism for bringing
the chip out of reset at startup and for returning it to reset
at power down
The reset out is connected to the reset pin of 89C51
through an inverter
VOUT is connected to the Vcc of any memory chip
which requires battery back up

Battery Backup

M. Krishna Kumar MAM/M7/LU18/V1/2004 15

Serial Interface

-12V
8 9

Vss GND

VDD VCC

D

R15

14

+12V +5V

Transmitted data

Received data

TX

RX

89C51

3

2

1 16

TX

RX

89C51

D

R

+

+
+

+
22uf

22uf

22uf

22uf
15

11

1

3
2

10

14

7

Transmitted data

Received data

+5V

1
6

6
5

4

Max 232
16

1488

1489

M. Krishna Kumar MAM/M7/LU18/V1/2004 16

RS 232 interface can be realised with 1488 (transmitter)
and 1489 (receiver) level translator Ics
These ICs require +\- 12V supplies
Max 232 IC require only 5V and four external capacitors

Serial Interface

M. Krishna Kumar MAM/M7/LU18/V1/2004 17

LCD Interface

AD7-AD0

74F373

74F138

LM015

DB7-DB0

ALE

P2.7/A15
P2.6/A14
P2.5/A13

VCC

E1

E2

E3

A0

A1

A2

R\W

89C51

LE

D7-D0
O0

OE

RS

WR

M. Krishna Kumar MAM/M7/LU18/V1/2004 18

LCD module LM015 displays one line of 16 characters.
LM015 is initialized with some command words through
its control register
The data to be displayed is written into its data register in
ASCII format
RS pin distinguishes the control and data registers when E
is logic high

LCD Interface

M. Krishna Kumar MAM/M7/LU18/V1/2004 19

LED Interface-1

8 8 8 8 8

89C51

MC14489
A
B
C

D

E
F
G
H

VCC

+5V

3.6K

R
X

Data IO

Clock

Enable

Bank
5Bank 4
Bank 3
Bank 2
Bank 1

P1.2
P1.1
P1.0

8

M. Krishna Kumar MAM/M7/LU18/V1/2004 20

MC14489 is a multi character LED driver
With out additional ICs 89C51 can be interfaced to drive
five 7 Segment LED displays.
24 bit data is serially transmitted to the the driver by
the 89C51 to display five digits with decimal point option
MC14489s can be cascaded for more number of displays
The brightness is controlled by the external resister 3.6K

LED Interface-1

Architecture of 80386

• The Internal Architecture of 80386 is divided into 3 sections.

• Central processing unit

• Memory management unit

• Bus interface unit

• Central processing unit is further divided into Execution unit
and Instruction unit

• Execution unit has 8 General purpose and 8 Special purpose
registers which are either used for handling data or calculating
offset addresses.

Next page

• The Instruction unit decodes the opcode bytes received from
the 16-byte instruction code queue and arranges them in a
3- instruction decoded instruction queue.

• After decoding them pass it to the control section for deriving
the necessary control signals. The barrel shifter increases the
speed of all shift and rotate operations.

• The multiply / divide logic implements the bit-shift-rotate
algorithms to complete the operations in minimum time.

• Even 32- bit multiplications can be executed within one
microsecond by the multiply / divide logic.

Next page

• The Memory management unit consists of a Segmentation unit
and a Paging unit.

• Segmentation unit allows the use of two address components,
viz. segment and offset for relocability and sharing of code and
data.

• Segmentation unit allows segments of size 4Gbytes at max.
• The Paging unit organizes the physical memory in terms of

pages of 4kbytes size each.
• Paging unit works under the control of the segmentation unit,

i.e. each segment is further divided into pages. The virtual
memory is also organizes in terms of segments and pages by
the memory management unit.

Next page

• The Segmentation unit provides a 4 level protection
mechanism for protecting and isolating the system code and
data from those of the application program.

• Paging unit converts linear addresses into physical addresses.
• The control and attribute PLA checks the privileges at the page

level. Each of the pages maintains the paging information of
the task. The limit and attribute PLA checks segment limits
and attributes at segment level to avoid invalid accesses to
code and data in the memory segments.

Next page

• The Bus control unit has a prioritizer to resolve the priority of
the various bus requests. This controls the access of the bus.
The address driver drives the bus enable and address signal
A0 – A31. The pipeline and dynamic bus sizing unit handle the
related control signals.

• The data buffers interface the internal data bus with the system
bus.

Signal Descriptions of 80386

• CLK2 :The input pin provides the basic system clock timing
for the operation of 80386.

• D0 – D31:These 32 lines act as bidirectional data bus during
different access cycles.

• A31 – A2: These are upper 30 bit of the 32- bit address bus.
• BE0 to BE3: The 32- bit data bus supported by 80386 and the

memory system of 80386 can be viewed as a 4- byte wide
memory access mechanism. The 4 byte enable lines BE0 to
BE3, may be used for enabling these 4 blanks. Using these 4
enable signal lines, the CPU may transfer 1 byte / 2 / 3 / 4 byte
of data simultaneously.

Next page

PIN DIAGRAM OF 80386

80386
PROCESSOR

CLK 2
2 X CLOCK

DATA
BUSD 0 – D 31

32 BIT
DATA

BUS
CONTROL

ADS #

NA #

BS 16 #

READY

HOLD

HLDA

INTR

NMI

RESET

BUS
ARBITRATION

INTERRUPTS
GND

V CC

POWER
CONNECTIO

NS

ERROR #

BUSY #

PEREQ

LOCK #

M / IO

D / C #

ADDRESS
BUS

A 2 – A 31

BE 3 #

BE 2 #

BE 1 #

BE 0 #

W / R #

COPROCESS
OR

SIGNALLING

BUS CYCLE
DEFINATION

BYTE
ENABLI

NES

32 – BIT
ADDRESS

• W/R#: The write / read output distinguishes the write and read
cycles from one another.

• D/C#: This data / control output pin distinguishes between a
data transfer cycle from a machine control cycle like interrupt
acknowledge.

• M/IO#: This output pin differentiates between the memory
and I/O cycles.

• LOCK#: The LOCK# output pin enables the CPU to prevent
the other bus masters from gaining the control of the system
bus.

• NA#: The next address input pin, if activated, allows address
pipelining, during 80386 bus cycles.

Next page

• ADS#: The address status output pin indicates that the address
bus and bus cycle definition pins(W/R#, D/C#, M/IO#, BE0#
to BE3#) are carrying the respective valid signals. The 80383
does not have any ALE signals and so this signals may be used
for latching the address to external latches.

• READY#: The ready signals indicates to the CPU that the
previous bus cycle has been terminated and the bus is ready
for the next cycle. The signal is used to insert WAIT states in a
bus cycle and is useful for interfacing of slow devices with
CPU.

• VCC: These are system power supply lines.
• VSS: These return lines for the power supply.

Next page

• BS16#: The bus size – 16 input pin allows the interfacing of 16
bit devices with the 32 bit wide 80386 data bus. Successive 16
bit bus cycles may be executed to read a 32 bit data from a
peripheral.

• HOLD: The bus hold input pin enables the other bus masters
to gain control of the system bus if it is asserted.

• HLDA: The bus hold acknowledge output indicates that a
valid bus hold request has been received and the bus has been
relinquished by the CPU.

• BUSY#: The busy input signal indicates to the CPU that the
coprocessor is busy with the allocated task.

Next page

• ERROR#: The error input pin indicates to the CPU that the
coprocessor has encountered an error while executing its
instruction.

• PEREQ: The processor extension request output signal
indicates to the CPU to fetch a data word for the coprocessor.

• INTR: This interrupt pin is a maskable interrupt, that can be
masked using the IF of the flag register.

• NMI: A valid request signal at the non-maskable interrupt
request input pin internally generates a non- maskable
interrupt of type2.

Next page

• RESET: A high at this input pin suspends the current
operation and restart the execution from the starting location.

• N / C : No connection pins are expected to be left open while
connecting the 80386 in the circuit.

Register Organisation

• The 80386 has eight 32 - bit general purpose registers which
may be used as either 8 bit or 16 bit registers.

• A 32 - bit register known as an extended register, is
represented by the register name with prefix E.

• Example : A 32 bit register corresponding to AX is EAX,
similarly BX is EBX etc.

• The 16 bit registers BP, SP, SI and DI in 8086 are now
available with their extended size of 32 bit and are names as
EBP,ESP,ESI and EDI.

• AX represents the lower 16 bit of the 32 bit register EAX.
• BP, SP, SI, DI represents the lower 16 bit of their 32 bit

counterparts, and can be used as independent 16 bit registers.
Next page

Next page

GENERAL DATA AND ADDRESS REGISTERS

INSTRUCTION POINTER AND FLAG REGISTER

SEGMENT SELECTOR REGISTERS

CODE SEGMENT

DATA SEGMENT

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

IP

FLAGS

01631 15

ESP

EBP

EDI

ESI

EDX

ECX

EBX

EAX

SP

BP

DI

SI

DX

CX

BX

AX

01631 15

STACK SEGMENT

• The six segment registers available in 80386 are CS, SS, DS,
ES, FS and GS.

• The CS and SS are the code and the stack segment registers
respectively, while DS, ES, FS, GS are 4 data segment
registers.

• A 16 bit instruction pointer IP is available along with 32 bit
counterpart EIP.

• Flag Register of 80386: The Flag register of 80386 is a 32 bit
register. Out of the 32 bits, Intel has reserved bits D18 to D31,
D5 and D3, while D1 is always set at 1.Two extra new flags are
added to the 80286 flag to derive the flag register of 80386.
They are VM and RF flags.

Next page

CFVM RF 0 NT IOPL OF IF TF SF ZF 0 AF 0 PF 1

0123456789101112131415

DF

16171831

RESERVED FOR
INTEL

FLAGS

FLAG REGISTER OF 80386

F
L
A
G
S

• VM - Virtual Mode Flag: If this flag is set, the 80386 enters
the virtual 8086 mode within the protection mode. This is to be
set only when the 80386 is in protected mode. In this mode, if
any privileged instruction is executed an exception 13 is
generated. This bit can be set using IRET instruction or any
task switch operation only in the protected mode.

• RF- Resume Flag: This flag is used with the debug register
breakpoints. It is checked at the starting of every instruction
cycle and if it is set, any debug fault is ignored during the
instruction cycle. The RF is automatically reset after
successful execution of every instruction, except for IRET and
POPF instructions.

Next page

• Also, it is not automatically cleared after the successful
execution of JMP, CALL and INT instruction causing a task
switch. These instruction are used to set the RF to the value
specified by the memory data available at the stack.

• Segment Descriptor Registers: This registers are not available
for programmers, rather they are internally used to store the
descriptor information, like attributes, limit and base addresses
of segments.

• The six segment registers have corresponding six 73 bit
descriptor registers. Each of them contains 32 bit base address,
32 bit base limit and 9 bit attributes. These are automatically
loaded when the corresponding segments are loaded with
selectors.

Next page

• Control Registers: The 80386 has three 32 bit control registers
CR), CR2 and CR3 to hold global machine status independent
of the executed task. Load and store instructions are available
to access these registers.

• System Address Registers: Four special registers are defined to
refer to the descriptor tables supported by 80386.

• The 80386 supports four types of descriptor table, viz. global
descriptor table (GDT), interrupt descriptor table (IDT), local
descriptor table (LDT) and task state segment descriptor
(TSS).

Next page

• Debug and Test Registers: Intel has provide a set of 8 debug
registers for hardware debugging. Out of these eight registers
DR0 to DR7, two registers DR4 and DR5 are Intel reserved.

• The initial four registers DR0 to DR3 store four program
controllable breakpoint addresses, while DR6 and DR7

respectively hold breakpoint status and breakpoint control
information.

• Two more test register are provided by 80386 for page
cacheing namely test control and test status register.

Next page

• ADDRESSING MODES: The 80386 supports overall eleven
addressing modes to facilitate efficient execution of higher
level language programs.

• In case of all those modes, the 80386 can now have 32-bit
immediate or 32- bit register operands or displacements.

• The 80386 has a family of scaled modes. In case of scaled
modes, any of the index register values can be multiplied by a
valid scale factor to obtain the displacement.

• The valid scale factor are 1, 2, 4 and 8.

Next page

• The different scaled modes are as follows.
• Scaled Indexed Mode: Contents of the an index register are

multiplied by a scale factor that may be added further to get
the operand offset.

• Based Scaled Indexed Mode: Contents of the an index register
are multiplied by a scale factor and then added to base register
to obtain the offset.

• Based Scaled Indexed Mode with Displacement: The
Contents of the an index register are multiplied by a scaling
factor and the result is added to a base register and a
displacement to get the offset of an operand.

Real Address Mode of 80386

• After reset, the 80386 starts from memory location
FFFFFFF0H under the real address mode. In the real mode,
80386 works as a fast 8086 with 32-bit registers and data
types.

• In real mode, the default operand size is 16 bit but 32- bit
operands and addressing modes may be used with the help of
override prefixes.

• The segment size in real mode is 64k, hence the 32-bit
effective addressing must be less than 0000FFFFFH. The real
mode initializes the 80386 and prepares it for protected mode.

Next page

Next page

OFFSET

c

c

c

cc

SEGMENT
SELECTOR 0000

MEMORY OPERAND

SEGMENT BASE

MAX LIMIT FIXED
AT 64 K IN REAL

MODE

64 K
BYTES

019

015

SELECTED
SEGMENT

Physical Address Formation In Real Mode Of 80386

+

• Memory Addressing in Real Mode: In the real mode, the
80386 can address at the most 1Mbytes of physical memory
using address lines A0-A19.

• Paging unit is disabled in real addressing mode, and hence the
real addresses are the same as the physical addresses.

• To form a physical memory address, appropriate segment
registers contents (16-bits) are shifted left by four positions
and then added to the 16-bit offset address formed using one
of the addressing modes, in the same way as in the 80386 real
address mode.

• The segment in 80386 real mode can be read, write or
executed, i.e. no protection is available.

Next page

• Any fetch or access past the end of the segment limit generate
exception 13 in real address mode.

• The segments in 80386 real mode may be overlapped or non-
overlapped.

• The interrupt vector table of 80386 has been allocated 1Kbyte
space starting from 00000H to 003FFH.

Next page

Protected Mode of 80386

• All the capabilities of 80386 are available for utilization in its
protected mode of operation.

• The 80386 in protected mode support all the software written
for 80286 and 8086 to be executed under the control of
memory management and protection abilities of 80386.

• The protected mode allows the use of additional instruction,
addressing modes and capabilities of 80386.

• ADDRESSING IN PROTECTED MODE: In this mode, the
contents of segment registers are used as selectors to address
descriptors which contain the segment limit, base address and
access rights byte of the segment.

Next page

c

c

c

c

SELECTOR OFFSET

MEMORY OPERAND

SEGMENT BASE ADDRESS

SEGMENT LIMIT

UP TO
4 GB

SELECTED

SEGMENT

Protected Mode Addressing Without Paging Unit

48 / 32 – BIT POINTER

c

c

031 / 1547 / 31

SELECTOR OFFSET

ACCESS RIGHT

LIMIT

BASE ADDRESS

SEGMENT DESCRIPTOR

+

• The effective address (offset) is added with segment base
address to calculate linear address. This linear address is
further used as physical address, if the paging unit is disabled,
otherwise the paging unit converts the linear address into
physical address.

• The paging unit is a memory management unit enabled only in
protected mode. The paging mechanism allows handling of
large segments of memory in terms of pages of 4Kbyte size.

• The paging unit operates under the control of segmentation
unit. The paging unit if enabled converts linear addresses into
physical address, in protected mode.

Segmentation

• DESCRIPTOR TABLES: These descriptor tables and
registers are manipulated by the operating system to ensure the
correct operation of the processor, and hence the correct
execution of the program.

• Three types of the 80386 descriptor tables are listed as
follows:

• GLOBAL DESCRIPTOR TABLE (GDT)
• LOCAL DESCRIPTOR TABLE (LDT)
• INTERRUPT DESCRIPTOR TABLE (IDT)

Next page

• DESCRIPTORS: The 80386 descriptors have a 20-bit
segment limit and 32-bit segment address. The descriptor of
80386 are 8-byte quantities access right or attribute bits along
with the base and limit of the segments.

• Descriptor Attribute Bits: The A (accessed) attributed bit
indicates whether the segment has been accessed by the CPU
or not.

• The TYPE field decides the descriptor type and hence the
segment type.

• The S bit decides whether it is a system descriptor (S=0) or
code/data segment descriptor (S=1).

Next page

Next page

BASE

23 ….26ATYPESDPLP
LIMIT

19 …. 16AVL0DGBASE 31..24

SEGMENT BASE 15 ...0 SEGMENT BASE 15 ….0

031

+ 4

Structure of An Descriptor

B
Y

T
E

A
D

D
R

E
S

S
0

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit - 1 = Present , 0 = not present
S Segment Descriptor -0 = System Descriptor,

1 = Code or data segment descriptor
TYPE Type of segment
G Granularity Bit - 1= Segment length is page granular ,

0 = Segment length is byte granular
D Default Operation size
0 Bit must be zero

AVL Available field for user or OS

• The DPL field specifies the descriptor privilege level.
• The D bit specifies the code segment operation size. If D=1,

the segment is a 32-bit operand segment, else, it is a 16-bit
operand segment.

• The P bit (present) signifies whether the segment is present in
the physical memory or not. If P=1, the segment is present in
the physical memory.

• The G (granularity) bit indicates whether the segment is page
addressable. The zero bit must remain zero for compatibility
with future process.

Next page

• The AVL (available) field specifies whether the descriptor is
for user or for operating system.

• The 80386 has five types of descriptors listed as follows:
1. Code or Data Segment Descriptors.
2. System Descriptors.
3. Local descriptors.
4. TSS (Task State Segment) Descriptors.
5. GATE Descriptors.
• The 80386 provides a four level protection mechanism

exactly in the same way as the 80286 does.

Paging

• PAGING OPERATION: Paging is one of the memory
management techniques used for virtual memory multitasking
operating system.

• The segmentation scheme may divide the physical memory
into a variable size segments but the paging divides the
memory into a fixed size pages.

• The segments are supposed to be the logical segments of the
program, but the pages do not have any logical relation with
the program.

• The pages are just fixed size portions of the program module
or data.

Next page

• The advantage of paging scheme is that the complete segment
of a task need not be in the physical memory at any time.

• Only a few pages of the segments, which are required
currently for the execution need to be available in the physical
memory. Thus the memory requirement of the task is
substantially reduced, relinquishing the available memory for
other tasks.

• Whenever the other pages of task are required for execution,
they may be fetched from the secondary storage.

• The previous page which are executed, need not be available
in the memory, and hence the space occupied by them may be
relinquished for other tasks.

Next page

• Thus paging mechanism provides an effective technique to
manage the physical memory for multitasking systems.

• Paging Unit: The paging unit of 80386 uses a two level table
mechanism to convert a linear address provided by
segmentation unit into physical addresses.

• The paging unit converts the complete map of a task into
pages, each of size 4K. The task is further handled in terms of
its page, rather than segments.

• The paging unit handles every task in terms of three
components namely page directory, page tables and page
itself.

Next page

• Paging Descriptor Base Register: The control register CR2 is
used to store the 32-bit linear address at which the previous
page fault was detected.

• The CR3 is used as page directory physical base address
register, to store the physical starting address of the page
directory.

• The lower 12 bit of the CR3 are always zero to ensure the page
size aligned directory. A move operation to CR3 automatically
loads the page table entry caches and a task switch operation,
to load CR0 suitably.

Next page

• Page Directory : This is at the most 4Kbytes in size. Each
directory entry is of 4 bytes, thus a total of 1024 entries are
allowed in a directory.

• The upper 10 bits of the linear address are used as an index to
the corresponding page directory entry. The page directory
entries point to page tables.

• Page Tables: Each page table is of 4Kbytes in size and many
contain a maximum of 1024 entries. The page table entries
contain the starting address of the page and the statistical
information about the page.

Next page

Next page

P
R
-
W

U
-
S

OS

RESERVED

PAGE TABLE ADDRESS
31 ….12 A 0000 D

P
R
-
W

U
-
S

OS

RESERVED

PAGE FRAME ADDRESS

31 ….12 A 0000 D

PAGE DIRECTORY ENTRY

PAGE TABLE ENTRY

Next page

U
-
S

R
-
W

PERMITTED FOR

LEVEL 3

PERMITTED FOR

LEVEL 2 , 1 OR 0

0

0

1

1

0

1

0

1

NONE

READ ONLY

READ - WRITE
READ / WRITE

NONE

READ / WRITE

READ / WRITE

READ / WRITE

• The upper 20 bit page frame address is combined with the
lower 12 bit of the linear address. The address bits A12- A21 are
used to select the 1024 page table entries. The page table can
be shared between the tasks.

• The P bit of the above entries indicate, if the entry can be used
in address translation.

• If P=1, the entry can be used in address translation, otherwise
it cannot be used.

• The P bit of the currently executed page is always high.
• The accessed bit A is set by 80386 before any access to the

page. If A=1, the page is accessed, else unaccessed.
Next page

Next page

+

+
+

USER
MEMORY

PAGE TABLE

DIRECTORY

CONTROL
REGISTERS

OFFSETTABLEDIRECTORY

INSIDE 80386 IN THE MEMORY

031

0122231

031

12
1010

DBA Physical directory base address

DBA

CR 0

CR1

CR3

CR2

031

• The D bit (Dirty bit) is set before a write operation to the page
is carried out. The D-bit is undefined for page director entries.

• The OS reserved bits are defined by the operating system
software.

• The User / Supervisor (U/S) bit and read/write bit are used to
provide protection. These bits are decoded to provide
protection under the 4 level protection model.

• The level 0 is supposed to have the highest privilege, while the
level 3 is supposed to have the least privilege.

• This protection provide by the paging unit is transparent to the
segmentation unit.

Virtual 8086 Mode

• In its protected mode of operation, 80386DX provides a virtual
8086 operating environment to execute the 8086 programs.

• The real mode can also used to execute the 8086 programs
along with the capabilities of 80386, like protection and a few
additional instructions.

• Once the 80386 enters the protected mode from the real mode,
it cannot return back to the real mode without a reset
operation.

• Thus, the virtual 8086 mode of operation of 80386, offers an
advantage of executing 8086 programs while in protected
mode.

Next page

• The address forming mechanism in virtual 8086 mode is
exactly identical with that of 8086 real mode.

• In virtual mode, 8086 can address 1Mbytes of physical
memory that may be anywhere in the 4Gbytes address space of
the protected mode of 80386.

• Like 80386 real mode, the addresses in virtual 8086 mode lie
within 1Mbytes of memory.

• In virtual mode, the paging mechanism and protection
capabilities are available at the service of the programmers.

• The 80386 supports multiprogramming, hence more than one
programmer may be use the CPU at a time.

Next page

Next page

AVAILABLE

PHYSICAL MEMORY 020000000 H

`

Memory Management In Virtual 8086 Mode
000000000 H

PAGE N

8086 OS

EMPTY

TASK 2 PAGE TABLEVIRTUAL MODE
8086 TASK PAGE DIRECTOR TASK 2

PAGE N

PAGE 1

8086 OS

PAGE
DIRECTORY

ROOT

EMPTY

TASK 1 PAGE TABLE

PAGE DIRECTORY TASK 1
VIRTUAL MODE

8086 TASK

TASK 1
MEMORY

8086 OS

MEMORY

TASK 1
MEMORY

TASK 2
MEMORY

TASK 2

MEMORY

TASK 1
MEMORY

386 DX CPU OS
MEMORY

TASK 2
MEMORY

• Paging unit may not be necessarily enable in virtual mode, but
may be needed to run the 8086 programs which require more
than 1Mbyts of memory for memory management function.

• In virtual mode, the paging unit allows only 256 pages, each of
4Kbytes size.

• Each of the pages may be located anywhere in the maximum
4Gbytes physical memory. The virtual mode allows the
multiprogramming of 8086 applications.

• The virtual 8086 mode executes all the programs at privilege
level 3.Any of the other programmes may deny access to the
virtual mode programs or data.

Next page

• However, the real mode programs are executed at the highest
privilege level, i.e. level 0.

• The virtual mode may be entered using an IRET instruction at
CPL=0 or a task switch at any CPL, executing any task whose
TSS is having a flag image with VM flag set to 1.

• The IRET instruction may be used to set the VM flag and
consequently enter the virtual mode.

• The PUSHF and POPF instructions are unable to read or set
the VM bit, as they do not access it.

• Even in the virtual mode, all the interrupts and exceptions are
handled by the protected mode interrupt handler.

Next page

• To return to the protected mode from the virtual mode, any
interrupt or execution may be used.

• As a part of interrupt service routine, the VM bit may be reset
to zero to pull back the 80386 into protected mode.

Features of 80386

• This 80386 is a 32bit processor that supports, 8bit/32bit data
operands.

• The 80386 instruction set is upward compatible with all its
predecessors.

• The 80386 can run 8086 applications under protected mode in
its virtual 8086 mode of operation.

• With the 32 bit address bus, the 80386 can address upto
4Gbytes of physical memory. The physical memory is
organised in terms of segments of 4Gbytes at maximum.

• The 80386 CPU supports 16K number of segments and thus
the total virtual space of 4Gbytes * 16K = 64 Terrabytes.

Next page

• The memory management section of 80386 supports the
virtual memory, paging and four levels of protection,
maintaining full compatibility with 80286.

• The 80386 offers a set of 8 debug registers DR0-DR7 for
hardware debugging and control. The 80386 has on-chip
address translation cache.

• The concept of paging is introduced in 80386 that enables it to
organise the available physical memory in terms of pages of
size 4Kbytes each, under the segmented memory.

• The 80386 can be supported by 80387 for mathematical data
processing.

80486 Microprocessor

• The 32-bit 80486 is the next evolutionary step up from the
80386.

• One of the most obvious feature included in a 80486 is a built
in math coprocessor. This coprocessor is essentially the same
as the 80387 processor used with a 80386, but being integrated
on the chip allows it to execute math instructions about three
times as fast as a 80386/387 combination.

• 80486 is an 8Kbyte code and data cache.
• To make room for the additional signals, the 80486 is

packaged in a 168 pin, pin grid array package instead of the
132 pin PGA used for the 80386.

Pin Definitions

• A 31-A2 : Address outputs A31-A2 provide the memory and
I/O with the address during normal operation. During a cache
line invalidation A31-A4 are used to drive the microprocessor.

• A20M3 : The address bit 20 mask causes the 80486 to wrap its
address around from location 000FFFFFH to 00000000H as in
8086. This provides a memory system that functions like the
1M byte real memory system in the 8086 processors.

• ADS : The address data strobe become logic zero to indicate
that the address bus contains a valid memory address.

Next page

• AHOLD: The address hold input causes the microprocessor to
place its address bus connections at their high-impedance state,
with the remainder of the buses staying active. It is often used
by another bus master to gain access for a cache invalidation
cycle. BREQ: This bus request output indicates that the 486
has generated an internal bus request.
____ ____

• BE3-BE0 : Byte enable outputs select a bank of the memory
system when information is transferred between the
microprocessor and its memory and I/O.

The BE3 signal enables D31 – D24 , BE2 enables
D23-D16, BE1 enables D15 – D8 and BE0 enables D7-D0.

Next page

• BLAST: The burst last output shows that the burst bus cycle is

complete on the next activation of BRDY# signal.

• BOFF : The Back-off input causes the microprocessor to
place its buses at their high impedance state during the next
cycle. The microprocessor remains in the bus hold state until
the BOFF# pin is placed at a logic 1 level.

• NMI : The non-maskable interrupt input requests a type 2
interrupt.

Next page

• BRDY : The burst ready input is used to signal the

microprocessor that a burst cycle is complete.

• KEN : The cache enable input causes the current bus to be
stored in the internal.

• LOCK : The lock output becomes a logic 0 for any instruction
that is prefixed with the lock prefix.

__
• W / R : current bus cycle is either a read or a write.Next page

• IGNNE : The ignore numeric error input causes the

coprocessor to ignore floating point error and to continue
processing data. The signal does not affect the state of the
FERR pin.

• FLUSH : The cache flush input forces the microprocessor to
erase the contents of its 8K byte internal cache.

• EADS: The external address strobe input is used with AHOLD
to signal that an external address is used to perform a cache
invalidation cycle.

Next page

• FERR : The floating point error output indicates that the

floating point coprocessor has detected an error condition. It is
used to maintain compatibility with DOS software.

• BS8 : The bus size 8, input causes the 80486 to structure itself
with an 8-bit data bus to access byte-wide memory and I/O
components.

• BS16: The bus size 16, input causes the 80486 to structure
itself with an 16-bit data bus to access word-wide memory and
I/O components.

• PCHK : The parity check output indicates that a parity error

was detected during a read operation on the DP3 – DP0 pin.

• PLOCK : The pseudo-lock output indicates that current
operation requires more than one bus cycle to perform. This
signal becomes a logic 0 for arithmetic coprocessor operations
that access 64 or 80 bit memory data.

• PWT: The page write through output indicates the state of the
PWT attribute bit in the page table entry or the page directory
entry.

Next page

• RDY : The ready input indicates that a non-burst bus cycle is

complete. The RDY signal must be returned or the
microprocessor places wait states into its timing until RDY is
asserted.

__ __
• M / IO : Memory / IO defines whether the address bus

contains a memory address or an I/O port number. It is also
combined with the W/ R signal to generate memory and I/O
read and write control signals.

80486 Signal Group

• The 80486 data bus, address bus, byte enable, ADS#, RDY#,
INTR, RESET, NMI, M/IO#, D/C#, W/R#, LOCK#, HOLD,
HLDA and BS16# signals function as we described for 80386.

• The 80486 requires 1 clock instead of 2 clock required by
80386.

• A new signal group on the 486 is the PARITY group DP0-DP3
and PCHK#.

• These signals allow the 80486 to implement parity detection /
generation for memory reads and memory writes.

• During a memory write operation, the 80486 generates an even
parity bit for each byte and outputs these bits on the DP0-DP3
lines.

Next page

Next page

• These bits will store in a separate parity memory bank.
• During a read operation the stored parity bits will be read from

the parity memory and applied to the DP0-DP3 pins.
• The 80486 checks the parities of the data bytes read and

compares them with the DP0-DP3 signals. If a parity error is
found, the 80486 asserts the PCHK# signal.

• Another new signals group consists of the BURST ready
signal BRDY# and BURST last signal BLAST#.

• These signals are used to control burst-mode memory reads
and writes.

Next page

• A normal 80486 memory read operation to read a line into the
cache requires 2 clock cycles. However, if a series of reads is
being done from successive memory locations, the reads can
be done in burst mode with only 1 clock cycle per read.

• To start the process the 80486 sends out the first address and
asserts the BLAST# signal high. When the external DRAM
controller has the first data bus, it asserts the BRDY# signal.

• The 80486 reads the data word and outputs the next address.
Since the data words are at successive addresses, only the
lower address bits need to be changed. If the DRAM controller
is operating in the page or the static column modes then it will
only have to output a new column address to the DRAM.

Next page

• In this mode the DRAM will be able to output the new data
word within 1 clock cycle.

• When the processor has read the required number of data
words, it asserts the BLAST# signal low to terminate the burst
mode.

• The final signal we want to discuss here are the bus request
output signal BREQ, the back-off input signal BOFF#, the
HOLD signal and the hold-acknowledge signal HLDA.

• These signals are used to control sharing the local 486 bus by
multiple processors (bus master).

• When a master on the bus need to use the bus, it asserts its
BERQ signal .

Next page

• An external parity circuit will evaluate requests to use the bus
and grant bus use to the highest – priority master. To ask the
486 to release the bus , the bus controller asserts the 486
HOLD input or BOFF# input.

• If the HOLD input is asserted, the 486 will finish the current
bus cycle, float its buses and assert the HLDA signal.

• To prevent another master from taking over the bus during a
critical operation, the 486 can assert its LOCK# or PLOCK#
signal.

EFLAG Register Of The 80486

• The extended flag register EFLAG is illustrated in the figure.
The only new flag bit is the AC alignment check, used to
indicate that the microprocessor has accessed a word at an odd
address or a double word boundary.

• Efficient software and execution require that data be stored at
word or doubleword boundaries.

Next page

Next page

GENERAL PURPOSE REGISTERS

INSTRUCTION POINTER AND FLAG REGISTER

SEGMENT REGISTERS
CODE SEGMENT

DATA SEGMENT

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

IP

FLAGS

01631 15

ESP

EBP

EDI

ESI

EDX

ECX

EBX

EAX

SP

BP

DI

SI

DX

CX

BX

AX

01631 15

STACK SEGMENT

CFVM RF 0 NT IOPL OF IF TF SF ZF 0 AF 0 PF 1

0123456789101112131415

DF

16171831

RESERVED
FOR INTEL

E
F
L
A
G

FLAGS

Flag Register of 80486

AC

CF: Carry Flag
AF: Auxiliary carry
ZF: Zero Flag
SF : Sign Flag
TF : Trap Flag
IE : Interrupt Enable

DF : Direct Flag

OF : Over Flow
IOPL : I/O Privilege Level
NT : Nested Task Flag
RF : Resume Flag
VM : Virtual Mode

AC : Alignment Check

80486 Memory System

• The memory system for the 486 is identical to 386
microprocessor. The 486 contains 4G bytes of memory
beginning at location 00000000H and ending at FFFFFFFFH.

• The major change to the memory system is internal to 486 in
the form of 8K byte cache memory, which speeds the
execution of instructions and the acquisition of data.

• Another addition is the parity checker/ generator built into the
80486 microprocessor.

• Parity Checker / Generator : Parity is often used to determine
if data are correctly read from a memory location. INTEL has
incorporated an internal parity generator / decoder.

Next page

Next page

P
A
R
I
T
Y

1G X 8

BE 3

BE 2

BE 1

BE 0

1G X 8 1G X 81G X 8

P
A
R
I
T
Y

P
A
R
I
T
Y

P
A
R
I
T
Y

DP3 D31- D24 DP2 DP1 DP 0D23- D16 D15- D8 D7 - D0

• Parity is generated by the 80486 during each write cycle.
Parity is generated as even parity and a parity bit is provided
for each byte of memory. The parity check bits appear on pins
DP0-DP3, which are also parity inputs as well as parity
outputs.

• These are typically stored in memory during each write cycle
and read from memory during each read cycle.

• On a read, the microprocessor checks parity and generates a
parity check error, if it occurs on the PCHK# pin. A parity
error causes no change in processing unless the user applies
the PCHK signal to an interrupt input.

Next page

• Interrupts are often used to signal a parity error in DS-based
computer systems. This is same as 80386, except the parity bit
storage.

• If parity is not used, Intel recommends that the DP0 – DP3
pins be pulled up to +5v.

• CACHE MEMORY: The cache memory system stores data
used by a program and also the instructions of the program.
The cache is organised as a 4 way set associative cache with
each location containing 16 bytes or 4 doublewords of data.

• Control register CR0 is used to control the cache with two new
control bits not present in the 80386 microprocessor.

Next page

PEMPE MT SN EW PAMW TCEPG

31 16 15 0

Control Register Zero (CR0)For The 80486 Microprocessor

• The CD (cache disable) , NW (non-cache write through) bits
are new to the 80486 and are used to control the 8K byte
cache.

• If the CD bit is a logic 1, all cache operations are inhibited.
This setting is only used for debugging software and normally
remains cleared. The NW bit is used to inhibit cache write-
through operation. As with CD, cache write through is
inhibited only for testing. For normal operations CD = 0 and
NW = 0.

• Because the cache is new to 80486 microprocessor and the
cache is filled using burst cycle not present on the 386.

80486 Memory Management

• The 80486 contains the same memory-management system as
the 80386. This includes a paging unit to allow any 4K byte
block of physical memory to be assigned to any 4K byte block
of linear memory. The only difference between 80386 and
80486 memory-management system is paging.

• The 80486 paging system can disabled caching for section of
translation memory pages, while the 80386 could not.

• If these are compared with 80386 entries, the addition of two
new control bits is observed (PWT and PCD).

• The page write through and page cache disable bits control
caching.

Next page

Next page

P
R
W

U
S

P
W
T

P
C
D

ADOO
OS

BITS

PAGE TABLE

OR

PAGE FRAME

Page Directory or Page Table Entry For The 80486 Microprocessor

31 0123456789101112

• The PWT controls how the cache functions for a write
operation of the external cache memory. It does not control
writing to the internal cache. The logic level of this bit is found
on the PWT pin of the 80486 microprocessor. Externally, it
can be used to dictate the write through policy of the external
caching.

• The PCD bit controls the on-chip cache. If the PCD = 0, the
on-chip cache is enabled for the current page of memory.

• Note that 80386 page table entries place a logic 0 in the PCD
bit position, enabling caching. If PCD = 1, the on-chip cache is
disable. Caching is disable regard less of condition of KEN#,
CD, and NW.

Cache Test Registers

• The 80486 cache test registers are TR3, TR4, TR5.
• Cache data register (TR3) is used to access either the cache fill

buffer for a write test operation or the cache read buffer for a
cache read test operation.

• In order to fill or read a cache line (128 bits wide), TR3 must
be written or read four times.

• The contents of the set select field in TR5 determine which
internal cache line is written or read through TR3. The 7 bit
test field selects one of the 128 different 16 byte wide cache
lines. The entry select bits of TR5 select an entry in the set or
the 32 bit location in the read buffer.

Next page

Next page

031

31

31 0

0

ConEntSet select

Tag Valid
LRU
Bits

Valid

bits

3711

11 10 24 3

Cache test register of the 80486 microprocessor

TR 3

GENERAL PURPOSE REGISTERS

INSTRUCTION POINTER AND FLAG REGISTER

SEGMENT REGISTERS
CODE SEGMENT

DATA
SEGMENT

CS

SS

DS

ES
FS

GS

EIP

EFLAGS

IP

FLAGS

01631 15

ESP

EBP

EDI

ESI
EDX

ECX

EBX
EAX

SP

BP

DI

SI
DX

CX

BX

AX
01631 15

STACK
SEGMENT

• The control bits in TR5 enable the fill buffer or read buffer
operation (00)

• Perform a cache write (01), Perform a cache read (10)
• Flush the cache (11).
• The cache status register (TR4) hold the cache tag, LRU bits

and a valid bit. This register is loaded with the tag and valid bit
before a cache a cache write operation and contains the tag,
valid bit, LRU bits, and 4 valid bits on a cache test read.

• Cache is tested each time that the microprocessor is reset if the
AHOLD pin is high for 2 clocks prior to the RESET pin going
low. This causes the 486 to completely test itself with a built in
self test or BIST.

Next page

• The BIST uses TR3, TR4, TR5 to completely test the internal
cache. Its outcome is reported in register EAX. If EAX is a
zero, the microprocessor, the coprocessor and cache have
passed the self test.

• The value of EAX can be tested after reset to determine if an
error is detected. In most of the cases we do not directly access
the test register unless we wish to perform our own tests on the
cache or TLB.

Architecture of 80386

•The Internal Architecture of 80386 is divided into 3 sections.
•Central processing unit
•Memory management unit
•Bus interface unit
•Central processing unit is further divided into Execution unit and Instruction unit
•Execution unit has 8 General purpose and 8 Special purpose registers which are either
used for handling data or calculating offset addresses.

D
IS

PL
A

C
E

M
E

N
T

 B
U

S

REGISTER FILE

MULTIPLY/
DIVIDE

BARREL
SHIFTER,

ADDER

3-INPUT
ADDER

DESCRIPTOR
REGISTER

LIMIT AND
ATTRIBUTE

PLA

ADDER

PAGE CACHE

CONTROL AND
ATTRIBUTE

PLA

REQUEST
PRIORITIZER

DECODE AND
SEQUENCING

CONTROL
ROM

INSTRUCTION
DECODER

3-DECODED
INSTRUCTION

QUEUE

PERFECTCHER/
LIMIT

CHECKER

16 BYTE
CODE

ADDRESS
DRIVER

PIPELINE/
BUS SIZE

CONTROL

MUX /
TRANS –

RECIVERS

PROJECTION
TEST UNIT

HOLD ,
INTR, NMI,

ERROR,
BUSY,

RESET,
HLDA

E
FF

E
C

T
IV

E
 A

D
D

R
E

SS
 B

U
S

E
FF

E
C

T
IV

E
 A

D
D

R
E

SS
 B

U
S

SEGMENTATION UNIT PAGING UNIT

C
O

N
T

R
O

L

PH
Y

SIC
A

L
 A

D
D

R
E

SS B
U

S

INTERNAL CONTROL BUS

L
IN

E
R

 A
D

D
R

E
SS B

U
S

 C
O

D
E

 FE
T

C
H

/
PA

G
E

 FE
T

C
H

D0-D31

BE0# - BE3#
A2 – A31

M/IO#, D/C#,
W/R#, LOCK#,

ADS#, NA#
BS16 #, READY#

DEDICATED ALU BUS

ALU CONTROL
ALU

CONTROL INSTRUCTION
PREDECODE

INSTRUCTION
PREFETCHER

BUS CONTROL

STATUS
FLAGS

CODE
STREAM

•The Instruction unit decodes the opcode bytes received from the 16-byte instruction
code queue and arranges them in a 3- instruction decoded instruction queue.
•After decoding them pass it to the control section for deriving the necessary control
signals. The barrel shifter increases the speed of all shift and rotate operations.
• The multiply / divide logic implements the bit-shift-rotate algorithms to complete the
operations in minimum time.
•Even 32- bit multiplications can be executed within one microsecond by the multiply /
divide logic.

•The Memory management unit consists of a Segmentation unit and a Paging unit.
•Segmentation unit allows the use of two address components, viz. segment and offset for
relocability and sharing of code and data.
•Segmentation unit allows segments of size 4Gbytes at max.
•The Paging unit organizes the physical memory in terms of pages of 4kbytes size each.
•Paging unit works under the control of the segmentation unit, i.e. each segment is further
divided into pages. The virtual memory is also organizes in terms of segments and pages
by the memory management unit.

•The Segmentation unit provides a 4 level protection mechanism for protecting and
isolating the system code and data from those of the application program.
•Paging unit converts linear addresses into physical addresses.
•The control and attribute PLA checks the privileges at the page level. Each of the pages
maintains the paging information of the task. The limit and attribute PLA checks segment
limits and attributes at segment level to avoid invalid accesses to code and data in the
memory segments.
•The Bus control unit has a prioritizer to resolve the priority of the various bus requests.
This controls the access of the bus. The address driver drives the bus enable and address
signal A0 – A31. The pipeline and dynamic bus sizing unit handle the related control
signals.
•The data buffers interface the internal data bus with the system bus.

PIN DIAGRAM OF 80386

VCC VSS A8 A11 A14 A15 A27A26A23A21A20A17A16

VSS A5 A7 A10 A13 VSS VCCA31A22VCC VSS A29A24A18

A3
A4 A6 A9 A12 VSS A30VSSA28A19 A25 A17VCC VSS

NC NC A2

VSS NC NC

VCC INTR

VCC VCC

NC

ERROR# NMI PEREQ

D/C# VSS VSS

VSS BUSY# RESET

VCC W/R# LOCK#

M/IO# NC VCC VCC BED# CLK2
D14D12D10VCCD7VSSD0VCC

BE2# BE1# NA# NC NC D13D11D5READY# VSS VCCD8D1

VCC VSS BS16# HOLD ADS# VSS VSSD9D4VCC D3 HLDAD6D2

VSS VCC D29

VCC VCC D24

VSS D23

D28 D25 VSS

D20 D21 D22

VSS D17 D19

D15 D16

D31 D27 D26

METAL LID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

C D E F G H J K L M N PA B

A30

VSS

VCC

D18

BE3#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

C D E F G H J K L M N PA B

Signal Descriptions of 80386

•CLK2 :The input pin provides the basic system clock timing for the operation of 80386.
•D0 – D31:These 32 lines act as bidirectional data bus during different access cycles.
•A31 – A2: These are upper 30 bit of the 32- bit address bus.
•BE0 to BE3: The 32- bit data bus supported by 80386 and the memory system of 80386
can be viewed as a 4- byte wide memory access mechanism. The 4 byte enable lines BE0
to BE3, may be used for enabling these 4 blanks. Using these 4 enable signal lines, the
CPU may transfer 1 byte / 2 / 3 / 4 byte of data simultaneously.
•ADS#: The address status output pin indicates that the address bus and bus cycle
definition pins(W/R#, D/C#, M/IO#, BE0# to BE3#) are carrying the respective valid
signals. The 80383 does not have any ALE signals and so this signals may be used for
latching the address to external latches.
•READY#: The ready signals indicates to the CPU that the previous bus cycle has been
terminated and the bus is ready for the next cycle. The signal is used to insert WAIT
states in a bus cycle and is useful for interfacing of slow devices with CPU.
•VCC: These are system power supply lines.
•VSS: These return lines for the power supply.
•BS16#: The bus size – 16 input pin allows the interfacing of 16 bit devices with the 32
bit wide 80386 data bus. Successive 16 bit bus cycles may be executed to read a 32 bit
data from a peripheral.
•HOLD: The bus hold input pin enables the other bus masters to gain control of the
system bus if it is asserted.
•HLDA: The bus hold acknowledge output indicates that a valid bus hold request has
been received and the bus has been relinquished by the CPU.

•BUSY#: The busy input signal indicates to the CPU that the coprocessor is busy with
the allocated task.
•ERROR#: The error input pin indicates to the CPU that the coprocessor has
encountered an error while executing its instruction.
•PEREQ: The processor extension request output signal indicates to the CPU to fetch a
data word for the coprocessor.
•INTR: This interrupt pin is a maskable interrupt, that can be masked using the IF of the
flag register.
•NMI: A valid request signal at the non-maskable interrupt request input pin internally
generates a non- maskable interrupt of type2.
•RESET: A high at this input pin suspends the current operation and restart the execution
from the starting location.
•N / C : No connection pins are expected to be left open while connecting the 80386 in
the circuit.

Register Organisation

•The 80386 has eight 32 - bit general purpose registers which may be used as either 8 bit
or 16 bit registers.

80386
PROCESSOR

CLK 22X CLOCK

DATA
BUS D

0
– D

31

32 BIT
DATA

BUS
CONTROL

ADS #

NA #

BS 16 #

READY

HOLD

HLDA

INTR

NMI

RESET

BUS
ARBITRATION

INTERRUPTS GND

VCC
POWER

CONNECTIO
NS

ERROR #

BUSY #

PEREQ

LOCK #

M / IO

D / C#

ADDRESS
BUS A2– A 31

BE3#

BE2#

BE1#

BE0#

W / R #

COPROCESS
OR

SIGNALLING

BUS CYCLE
DEFINATION

BYTE
ENABLI

NES

32 – BIT
ADDRESS

•A 32 - bit register known as an extended register, is represented by the register name
with prefix E.
•Example : A 32 bit register corresponding to AX is EAX, similarly BX is EBX etc.
•The 16 bit registers BP, SP, SI and DI in 8086 are now available with their extended size
of 32 bit and are names as EBP,ESP,ESI and EDI.
•AX represents the lower 16 bit of the 32 bit register EAX.
• BP, SP, SI, DI represents the lower 16 bit of their 32 bit counterparts, and can be used
as independent 16 bit registers.
•The six segment registers available in 80386 are CS, SS, DS, ES, FS and GS.
•The CS and SS are the code and the stack segment registers respectively, while DS, ES,
FS, GS are 4 data segment registers.
•A 16 bit instruction pointer IP is available along with 32 bit counterpart EIP.

GENERAL DATA AND ADDRESS

INSTRUCTION POINTER AND FLAG

SEGMENT SELECTOR
CODE

DATA
SEGMENT

CS
SS
DS
ES
FS
GS

EI

EFLA

IP

FLAG

016 31 15

ES
EB
ED
ES
ED
EC
EB
EA

SP
BP
DI
SI
DX
CX
BX
AX

016 31 15

STACK SEGMENT

•Flag Register of 80386: The Flag register of 80386 is a 32 bit register. Out of the 32
bits, Intel has reserved bits D18 to D31, D5 and D3, while D1 is always set at 1.Two extra
new flags are added to the 80286 flag to derive the flag register of 80386. They are VM
and RF flags.
•VM - Virtual Mode Flag: If this flag is set, the 80386 enters the virtual 8086 mode
within the protection mode. This is to be set only when the 80386 is in protected mode. In
this mode, if any privileged instruction is executed an exception 13 is generated. This bit
can be set using IRET instruction or any task switch operation only in the protected
mode.
•RF- Resume Flag: This flag is used with the debug register breakpoints. It is checked at
the starting of every instruction cycle and if it is set, any debug fault is ignored during the
instruction cycle. The RF is automatically reset after successful execution of every
instruction, except for IRET and POPF instructions.
•Also, it is not automatically cleared after the successful execution of JMP, CALL and
INT instruction causing a task switch. These instruction are used to set the RF to the
value specified by the memory data available at the stack.
•Segment Descriptor Registers: This registers are not available for programmers, rather
they are internally used to store the descriptor information, like attributes, limit and base
addresses of segments.
•The six segment registers have corresponding six 73 bit descriptor registers. Each of
them contains 32 bit base address, 32 bit base limit and 9 bit attributes. These are
automatically loaded when the corresponding segments are loaded with selectors.
•Control Registers: The 80386 has three 32 bit control registers CR), CR2 and CR3 to
hold global machine status independent of the executed task. Load and store instructions
are available to access these registers.
•System Address Registers: Four special registers are defined to refer to the descriptor
tables supported by 80386.

C
F

VM RF 0 NT IOPL OF IF T
F

SF ZF 0 A
F

0 PF 1

012345678910 11 12 1314 15

D
F

1617 18 31

RESERVED
FOR INTEL

FLAGS

FLAG REGISTER OF 80386

F
L
A
G
S

•The 80386 supports four types of descriptor table, viz. global descriptor table (GDT),
interrupt descriptor table (IDT), local descriptor table (LDT) and task state segment
descriptor (TSS).
•Debug and Test Registers: Intel has provide a set of 8 debug registers for hardware
debugging. Out of these eight registers DR0 to DR7, two registers DR4 and DR5 are Intel
reserved.
•The initial four registers DR0 to DR3 store four program controllable breakpoint
addresses, while DR6 and DR7 respectively hold breakpoint status and breakpoint control
information.
•Two more test register are provided by 80386 for page cacheing namely test control and
test status register.
•ADDRESSING MODES: The 80386 supports overall eleven addressing modes to
facilitate efficient execution of higher level language programs.
•In case of all those modes, the 80386 can now have 32-bit immediate or 32- bit register
operands or displacements.
•The 80386 has a family of scaled modes. In case of scaled modes, any of the index
register values can be multiplied by a valid scale factor to obtain the displacement.
•The valid scale factor are 1, 2, 4 and 8.
•The different scaled modes are as follows.
•Scaled Indexed Mode: Contents of the an index register are multiplied by a scale factor
that may be added further to get the operand offset.
•Based Scaled Indexed Mode: Contents of the an index register are multiplied by a scale
factor and then added to base register to obtain the offset.
•Based Scaled Indexed Mode with Displacement: The Contents of the an index register
are multiplied by a scaling factor and the result is added to a base register and a
displacement to get the offset of an operand.

Real Address Mode of 80386

•After reset, the 80386 starts from memory location FFFFFFF0H under the real address
mode. In the real mode, 80386 works as a fast 8086 with 32-bit registers and data types.
•In real mode, the default operand size is 16 bit but 32- bit operands and addressing
modes may be used with the help of override prefixes.
•The segment size in real mode is 64k, hence the 32-bit effective addressing must be less
than 0000FFFFFH. The real mode initializes the 80386 and prepares it for protected
mode.

•Memory Addressing in Real Mode: In the real mode, the 80386 can address at the most
1Mbytes of physical memory using address lines A0-A19.
•Paging unit is disabled in real addressing mode, and hence the real addresses are the
same as the physical addresses.
•To form a physical memory address, appropriate segment registers contents (16-bits) are
shifted left by four positions and then added to the 16-bit offset address formed using one
of the addressing modes, in the same way as in the 80386 real address mode.
•The segment in 80386 real mode can be read, write or executed, i.e. no protection is
available.
•Any fetch or access past the end of the segment limit generate exception 13 in real
address mode.
•The segments in 80386 real mode may be overlapped or non-overlapped.
•The interrupt vector table of 80386 has been allocated 1Kbyte space starting from
00000H to 003FFH.

Protected Mode of 80386

OFFSET

c

c

c

cc

SEGMENT
SELECTOR 0000

MEMORY

SEGMENT

MAX LIMIT
FIXED
AT 64

MODE

64 K
BYT
ES

019

015

SELECTED
SEGMENT

Physical Address Formation In Real Mode Of 80386

+

K IN REAL

•All the capabilities of 80386 are available for utilization in its protected mode of
operation.
•The 80386 in protected mode support all the software written for 80286 and 8086 to be
executed under the control of memory management and protection abilities of 80386.
•The protected mode allows the use of additional instruction, addressing modes and
capabilities of 80386.

•ADDRESSING IN PROTECTED MODE: In this mode, the contents of segment
registers are used as selectors to address descriptors which contain the segment limit,
base address and access rights byte of the segment.

•The effective address (offset) is added with segment base address to calculate linear
address. This linear address is further used as physical address, if the paging unit is
disabled, otherwise the paging unit converts the linear address into physical address.
•The paging unit is a memory management unit enabled only in protected mode. The
paging mechanism allows handling of large segments of memory in terms of pages of
4Kbyte size.
•The paging unit operates under the control of segmentation unit. The paging unit if
enabled converts linear addresses into physical address, in protected mode.

Segmentation

•DESCRIPTOR TABLES: These descriptor tables and registers are manipulated by the
operating system to ensure the correct operation of the processor, and hence the correct
execution of the program.

c

c

c

c

SELECT OFFSE

MEMORY

SEGMENT BASE ADDRESS

SEGMENT
LIMIT

UP TO

4 GB SEGMENT

Protected Mode Addressing Without Paging Unit

48 / 32 – BIT POINTER

c

c

031 / 15 47 / 31

SELECTOR OFFSET

ACCESS RIGHT

LIMIT

BASE

SEGMENT DESCRIPTOR
+ SELECTED

•Three types of the 80386 descriptor tables are listed as follows:
•GLOBAL DESCRIPTOR TABLE (GDT)
•LOCAL DESCRIPTOR TABLE (LDT)
•INTERRUPT DESCRIPTOR TABLE (IDT)
•DESCRIPTORS: The 80386 descriptors have a 20-bit segment limit and 32-bit segment
address. The descriptor of 80386 are 8-byte quantities access right or attribute bits along
with the base and limit of the segments.
•Descriptor Attribute Bits: The A (accessed) attributed bit indicates whether the segment
has been accessed by the CPU or not.
•The TYPE field decides the descriptor type and hence the segment type.

•The S bit decides whether it is a system descriptor (S=0) or code/data segment descriptor
(S=1).
•The DPL field specifies the descriptor privilege level.
•The D bit specifies the code segment operation size. If D=1, the segment is a 32-bit
operand segment, else, it is a 16-bit operand segment.
•The P bit (present) signifies whether the segment is present in the physical memory or
not. If P=1, the segment is present in the physical memory.
•The G (granularity) bit indicates whether the segment is page addressable. The zero bit
must remain zero for compatibility with future process.

•The AVL (available) field specifies whether the descriptor is for user or for operating
system.
•The 80386 has five types of descriptors listed as follows:
1.Code or Data Segment Descriptors.
2.System Descriptors.
3.Local descriptors.
4.TSS (Task State Segment) Descriptors.
5.GATE Descriptors.
•The 80386 provides a four level protection mechanism exactly in the same way as the
80286 does.

B
Y
T
E

A
D
D
R
E
S
S
0

Paging

•PAGING OPERATION: Paging is one of the memory management techniques used for
virtual memory multitasking operating system.
•The segmentation scheme may divide the physical memory into a variable size segments
but the paging divides the memory into a fixed size pages.
•The segments are supposed to be the logical segments of the program, but the pages do
not have any logical relation with the program.
•The pages are just fixed size portions of the program module or data.
•The advantage of paging scheme is that the complete segment of a task need not be in
the physical memory at any time.
•Only a few pages of the segments, which are required currently for the execution need to
be available in the physical memory. Thus the memory requirement of the task is
substantially reduced, relinquishing the available memory for other tasks.
•Whenever the other pages of task are required for execution, they may be fetched from
the secondary storage.
•The previous page which are executed, need not be available in the memory, and hence
the space occupied by them may be relinquished for other tasks.
•Thus paging mechanism provides an effective technique to manage the physical memory
for multitasking systems.

BASE
23 ….2ATYPE SDPLP

LIMIT

19 …. 16 AV0DGBAS 3.2

SEGMENT BASE 15 ..0 SEGMENT 15 ….0

031

+4

Structure of An Descriptor

BASE Base Address of the segment
 LIMIT The length of the segment

P Present Bit - 1 = Present , 0 = not present
S Segment Descriptor -0 = System Descriptor ,

1 = Code or data segment descriptor
TYPE Type of segment
G Granularity Bit - 1= Segment length is page granular ,

0 = Segment length is byte granular
D Default Operation size
0 Bit must be zero

AVL Available field for user or OS

•Paging Unit: The paging unit of 80386 uses a two level table mechanism to convert a
linear address provided by segmentation unit into physical addresses.
•The paging unit converts the complete map of a task into pages, each of size 4K. The
task is further handled in terms of its page, rather than segments.
•The paging unit handles every task in terms of three components namely page directory,
page tables and page itself.
•Paging Descriptor Base Register: The control register CR2 is used to store the 32-bit
linear address at which the previous page fault was detected.
•The CR3 is used as page directory physical base address register, to store the physical
starting address of the page directory.
•The lower 12 bit of the CR3 are always zero to ensure the page size aligned directory. A
move operation to CR3 automatically loads the page table entry caches and a task switch
operation, to load CR0 suitably.
•Page Directory : This is at the most 4Kbytes in size. Each directory entry is of 4 bytes,
thus a total of 1024 entries are allowed in a directory.
•The upper 10 bits of the linear address are used as an index to the corresponding page
directory entry. The page directory entries point to page tables.
•Page Tables: Each page table is of 4Kbytes in size and many contain a maximum of
1024 entries. The page table entries contain the starting address of the page and the
statistical information about the page.
•The upper 20 bit page frame address is combined with the lower 12 bit of the linear
address. The address bits A12- A21 are used to select the 1024 page table entries. The page
table can be shared between the tasks.
•The P bit of the above entries indicate, if the entry can be used in address translation.
•If P=1, the entry can be used in address translation, otherwise it cannot be used.
•The P bit of the currently executed page is always high.
•The accessed bit A is set by 80386 before any access to the page. If A=1, the page is
accessed, else unaccessed.
•The D bit (Dirty bit) is set before a write operation to the page is carried out. The D-bit
is undefined for page director entries.
•The OS reserved bits are defined by the operating system software.
•The User / Supervisor (U/S) bit and read/write bit are used to provide protection. These
bits are decoded to provide protection under the 4 level protection model.
•The level 0 is supposed to have the highest privilege, while the level 3 is supposed to
have the least privilege.
•This protection provide by the paging unit is transparent to the segmentation unit.

P
R
-
W

U
-S

O

RESERV

PAGE TABLE
31 ….1 A 0000 D

P
R
-
W

U
-
S

OS

RESERVE

PAGE FRAME
ADDRESS 31 ….1 A 0000 D

PAGE DIRECTORY ENTRY

PAGE TABLE ENTRY

U
-
S

R
-
W

PERMITTED FOR
LEVEL 3

PERMITTED

 LEVEL 2 , 1 OR 0

0

0

1

1

0

1

0

1

NONE

READ

READ -WRITE READ / WRITE

NONE

READ
/ WRITE

READ / WRIT
E

READ / WRITE

Virtual 8086 Mode

•In its protected mode of operation, 80386DX provides a virtual 8086 operating
environment to execute the 8086 programs.
•The real mode can also used to execute the 8086 programs along with the capabilities of
80386, like protection and a few additional instructions.
•Once the 80386 enters the protected mode from the real mode, it cannot return back to
the real mode without a reset operation.
•Thus, the virtual 8086 mode of operation of 80386, offers an advantage of executing
8086 programs while in protected mode.
•The address forming mechanism in virtual 8086 mode is exactly identical with that of
8086 real mode.
•In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in
the 4Gbytes address space of the protected mode of 80386.
•Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of
memory.
•In virtual mode, the paging mechanism and protection capabilities are available at the
service of the programmers.
•The 80386 supports multiprogramming, hence more than one programmer may be use
the CPU at a time.

+

+
+

USER
MEMORY

PAGE TABLE

DIRECTORY

CONTROL
REGISTERS

OFFSET TABLDIRECTOR

INSIDE 80386 IN THE MEMORY

0 31

01222 31

031

12
10 10

DBA Physical directory base address

DB

C 0

C 1

C 3

C 2

031

•Paging unit may not be necessarily enable in virtual mode, but may be needed to run the
8086 programs which require more than 1Mbyts of memory for memory management
function.
•In virtual mode, the paging unit allows only 256 pages, each of 4Kbytes size.
•Each of the pages may be located anywhere in the maximum 4Gbytes physical memory.
The virtual mode allows the multiprogramming of 8086 applications.
•The virtual 8086 mode executes all the programs at privilege level 3.Any of the other
programmes may deny access to the virtual mode programs or data.

•However, the real mode programs are executed at the highest privilege level, i.e. level 0.
•The virtual mode may be entered using an IRET instruction at CPL=0 or a task switch at
any CPL, executing any task whose TSS is having a flag image with VM flag set to 1.
•The IRET instruction may be used to set the VM flag and consequently enter the virtual
mode.
•The PUSHF and POPF instructions are unable to read or set the VM bit, as they do not
access it.

AVAILABLE

PHYSICAL MEMORY 020000000H

`

Memory Management In Virtual 8086
0000000 H

PAGE

8086 OS

EMPTY

TASK 2 PAGE VIRTUAL
8086 TASK PAGE DIRECTOR 2

PAGE

PAGE 1
8086 OS

PAGE
DIRECTORY

ROOT

EMPTY

TASK 1 PAGE
TABLE

PAGE DIRECTORY 1
VIRTUAL

8086 TASK

TASK 1
MEMORY

8086 OS

MEMORY

TASK 1
MEMORY

TASK 2
MEMORY

TASK 2
MEMORY

TASK 1
MEMORY

386 DX CPU OS
MEMORY

TASK 2
MEMORY

•Even in the virtual mode, all the interrupts and exceptions are handled by the protected
mode interrupt handler.
•To return to the protected mode from the virtual mode, any interrupt or execution may
be used.
•As a part of interrupt service routine, the VM bit may be reset to zero to pull back the
80386 into protected mode.

Features of 80386

•This 80386 is a 32bit processor that supports, 8bit/32bit data operands.
•The 80386 instruction set is upward compatible with all its predecessors.
•The 80386 can run 8086 applications under protected mode in its virtual 8086 mode of
operation.
•With the 32 bit address bus, the 80386 can address upto 4Gbytes of physical memory.
The physical memory is organised in terms of segments of 4Gbytes at maximum.
•The 80386 CPU supports 16K number of segments and thus the total virtual space of
4Gbytes * 16K = 64 Terrabytes.
•The memory management section of 80386 supports the virtual memory, paging and
four levels of protection, maintaining full compatibility with 80286.
•The 80386 offers a set of 8 debug registers DR0-DR7 for hardware debugging and
control. The 80386 has on-chip address translation cache.
•The concept of paging is introduced in 80386 that enables it to organise the available
physical memory in terms of pages of size 4Kbytes each, under the segmented memory.
•The 80386 can be supported by 80387 for mathematical data processing.

80486 Microprocessor

•The 32-bit 80486 is the next evolutionary step up from the 80386.
•One of the most obvious feature included in a 80486 is a built in math coprocessor. This
coprocessor is essentially the same as the 80387 processor used with a 80386, but being
integrated on the chip allows it to execute math instructions about three times as fast as a
80386/387 combination.
•80486 is an 8Kbyte code and data cache.
•To make room for the additional signals, the 80486 is packaged in a 168 pin, pin grid
array package instead of the 132 pin PGA used for the 80386.

Pin Definitions

•A 31-A2 : Address outputs A31-A2 provide the memory and I/O with the address during
normal operation. During a cache line invalidation A31-A4 are used to drive the
microprocessor.

•A20M3 : The address bit 20 mask causes the 80486 to wrap its address around from
location 000FFFFFH to 00000000H as in 8086. This provides a memory system that
functions like the 1M byte real memory system in the 8086 processors.

•ADS : The address data strobe become logic zero to indicate that the address bus
contains a valid memory address.

•AHOLD: The address hold input causes the microprocessor to place its address bus
connections at their high-impedance state, with the remainder of the buses staying active.
It is often used by another bus master to gain access for a cache invalidation cycle.
BREQ: This bus request output indicates that the 486 has generated an internal bus
request.
 ____ ____

• BE3-BE0 : Byte enable outputs select a bank of the memory system when information is
transferred between the microprocessor and its memory and I/O.
 The BE3 signal enables D31 – D24 , BE2 enables D23-D16, BE1
enables D15 – D8 and BE0 enables D7-D0.

•BLAST: The burst last output shows that the burst bus cycle is complete on the next
activation of BRDY# signal.

•BOFF : The Back-off input causes the microprocessor to place its buses at their high
impedance state during the next cycle. The microprocessor remains in the bus hold state
until the BOFF# pin is placed at a logic 1 level.

•NMI : The non-maskable interrupt input requests a type 2 interrupt.

•BRDY : The burst ready input is used to signal the microprocessor that a burst cycle is
complete.

•KEN : The cache enable input causes the current bus to be stored in the internal.

•LOCK : The lock output becomes a logic 0 for any instruction that is prefixed with the
lock prefix.
 __
•W / R : current bus cycle is either a read or a write.

•IGNNE : The ignore numeric error input causes the coprocessor to ignore floating point
error and to continue processing data. The signal does not affect the state of the FERR
pin.

•FLUSH : The cache flush input forces the microprocessor to erase the contents of its 8K
byte internal cache.

•EADS: The external address strobe input is used with AHOLD to signal that an external
address is used to perform a cache invalidation cycle.

•FERR : The floating point error output indicates that the floating point coprocessor has
detected an error condition. It is used to maintain compatibility with DOS software.

•BS8 : The bus size 8, input causes the 80486 to structure itself with an 8-bit data bus to
access byte-wide memory and I/O components.

•BS16: The bus size 16, input causes the 80486 to structure itself with an 16-bit data bus
to access word-wide memory and I/O components.

•PCHK : The parity check output indicates that a parity error was detected during a read
operation on the DP3 – DP0 pin.

•PLOCK : The pseudo-lock output indicates that current operation requires more than
one bus cycle to perform. This signal becomes a logic 0 for arithmetic coprocessor
operations that access 64 or 80 bit memory data.

•PWT: The page write through output indicates the state of the PWT attribute bit in the
page table entry or the page directory entry.

•RDY : The ready input indicates that a non-burst bus cycle is complete. The RDY signal
must be returned or the microprocessor places wait states into its timing until RDY is
asserted.
 __ __
•M / IO : Memory / IO defines whether the address bus contains a memory address or an
I/O port number. It is also combined with the W/ R signal to generate memory and I/O
read and write control signals.

80486 Signal Group

•The 80486 data bus, address bus, byte enable, ADS#, RDY#, INTR, RESET, NMI,
M/IO#, D/C#, W/R#, LOCK#, HOLD, HLDA and BS16# signals function as we
described for 80386.
•The 80486 requires 1 clock instead of 2 clock required by 80386.
•A new signal group on the 486 is the PARITY group DP0-DP3 and PCHK#.
•These signals allow the 80486 to implement parity detection / generation for memory
reads and memory writes.
•During a memory write operation, the 80486 generates an even parity bit for each byte
and outputs these bits on the DP0-DP3 lines.

•These bits will store in a separate parity memory bank.
•During a read operation the stored parity bits will be read from the parity memory and
applied to the DP0-DP3 pins.
•The 80486 checks the parities of the data bytes read and compares them with the DP0-
DP3 signals. If a parity error is found, the 80486 asserts the PCHK# signal.
•Another new signals group consists of the BURST ready signal BRDY# and BURST
last signal BLAST#.
•These signals are used to control burst-mode memory reads and writes.
•A normal 80486 memory read operation to read a line into the cache requires 2 clock
cycles. However, if a series of reads is being done from successive memory locations, the
reads can be done in burst mode with only 1 clock cycle per read.
•To start the process the 80486 sends out the first address and asserts the BLAST# signal
high. When the external DRAM controller has the first data bus, it asserts the BRDY#
signal.
•The 80486 reads the data word and outputs the next address. Since the data words are at
successive addresses, only the lower address bits need to be changed. If the DRAM
controller is operating in the page or the static column modes then it will only have to
output a new column address to the DRAM.

•In this mode the DRAM will be able to output the new data word within 1 clock cycle.

•When the processor has read the required number of data words, it asserts the BLAST#
signal low to terminate the burst mode.

•The final signal we want to discuss here are the bus request output signal BREQ, the
back-off input signal BOFF#, the HOLD signal and the hold-acknowledge signal HLDA.

•These signals are used to control sharing the local 486 bus by multiple processors (bus
master).

•When a master on the bus need to use the bus, it asserts its BERQ signal .

•An external parity circuit will evaluate requests to use the bus and grant bus use to the
highest – priority master. To ask the 486 to release the bus , the bus controller asserts the
486 HOLD input or BOFF# input.

•If the HOLD input is asserted, the 486 will finish the current bus cycle, float its buses
and assert the HLDA signal.

•To prevent another master from taking over the bus during a critical operation, the 486
can assert its LOCK# or PLOCK# signal.

EFLAG Register of The 80486

•The extended flag register EFLAG is illustrated in the figure. The only new flag bit is
the AC alignment check, used to indicate that the microprocessor has accessed a word at
an odd address or a double word boundary.
•Efficient software and execution require that data be stored at word or doubleword
boundaries.

GENERAL PURPOSE

INSTRUCTION POINTER AND FLAG

SEGMENT
CODE

DATA

C
S
D
E
F
G

EI

EFLA

I

FLAG

013 1

ES
EB
ED
ES
ED
EC
EB
EA

S
B
D
S
D
C
B
A

013 1

STACK

80486 Memory System

•The memory system for the 486 is identical to 386 microprocessor. The 486 contains 4G
bytes of memory beginning at location 00000000H and ending at FFFFFFFFH.
•The major change to the memory system is internal to 486 in the form of 8K byte cache
memory, which speeds the execution of instructions and the acquisition of data.
•Another addition is the parity checker/ generator built into the 80486 microprocessor.
•Parity Checker / Generator : Parity is often used to determine if data are correctly read
from a memory location. INTEL has incorporated an internal parity generator / decoder.

•Parity is generated by the 80486 during each write cycle. Parity is generated as even
parity and a parity bit is provided for each byte of memory. The parity check bits appear
on pins DP0-DP3, which are also parity inputs as well as parity outputs.
•These are typically stored in memory during each write cycle and read from memory
during each read cycle.
•On a read, the microprocessor checks parity and generates a parity check error, if it
occurs on the PCHK# pin. A parity error causes no change in processing unless the user
applies the PCHK signal to an interrupt input.
•Interrupts are often used to signal a parity error in DS-based computer systems. This is
same as 80386, except the parity bit storage.
•If parity is not used, Intel recommends that the DP0 – DP3 pins be pulled up to +5v.

CFV
M

RF 0 NT
IOP
L OF IF TF SF ZF 0 A

F
0 PF 1

012345678910 11 12 13 14 15

DF

16 17 18 31

RESERVED
FOR INTEL

E
F
L
A
G

FLAGS

Flag Register of 80486

A
C

CF: Carry Flag
AF: Auxiliary carry
ZF: Zero Flag
SF : Sign Flag
TF : Trap Flag
IE : Interrupt Enable

DF : Direct Flag

OF : Over Flow
IOPL : I/O Privilege Level
NT : Nested Task Flag
RF : Resume Flag
VM : Virtual Mode

AC : Alignment Check

•CACHE MEMORY: The cache memory system stores data used by a program and also
the instructions of the program. The cache is organised as a 4 way set associative cache
with each location containing 16 bytes or 4 doublewords of data.
•Control register CR0 is used to control the cache with two new control bits not present
in the 80386 microprocessor.
•The CD (cache disable) , NW (non-cache write through) bits are new to the 80486
and are used to control the 8K byte cache.
•If the CD bit is a logic 1, all cache operations are inhibited. This setting is only used for
debugging software and normally remains cleared. The NW bit is used to inhibit cache
write-through operation. As with CD, cache write through is inhibited only for testing.
For normal operations CD = 0 and NW = 0.
•Because the cache is new to 80486 microprocessor and the cache is filled using burst
cycle not present on the 386.

P
A
R
I
T
Y

1G X 8

 BE3 BE2 BE1 BE0

1G X 8 1G X 81G X 8

P
A
R
I
T
Y

P
A
R
I
T
Y

P
A
R
I
T
Y

DP 3 D 31 - D24 DP 2 DP1 DP0D23 - D16 D15- D8 D7- D0

80486 Memory Management

•The 80486 contains the same memory-management system as the 80386. This includes a
paging unit to allow any 4K byte block of physical memory to be assigned to any 4K byte
block of linear memory. The only difference between 80386 and 80486 memory-
management system is paging.
•The 80486 paging system can disabled caching for section of translation memory pages,
while the 80386 could not.

•If these are compared with 80386 entries, the addition of two new control bits is
observed (PWT and PCD).
•The page write through and page cache disable bits control caching.
•The PWT controls how the cache functions for a write operation of the external cache
memory. It does not control writing to the internal cache. The logic level of this bit is
found on the PWT pin of the 80486 microprocessor. Externally, it can be used to dictate
the write through policy of the external caching.
•The PCD bit controls the on-chip cache. If the PCD = 0, the on-chip cache is enabled for
the current page of memory.
•Note that 80386 page table entries place a logic 0 in the PCD bit position, enabling
caching. If PCD = 1, the on-chip cache is disable. Caching is disable regard less of
condition of KEN#, CD, and NW.

Cache Test Registers

•The 80486 cache test registers are TR3, TR4, TR5.
•Cache data register (TR3) is used to access either the cache fill buffer for a write test
operation or the cache read buffer for a cache read test operation.
•In order to fill or read a cache line (128 bits wide), TR3 must be written or read four
times.

PR
W

U
S

P
W
T

P
C
D

AD OO
OS

BITS

PAGE TABLE

OR
PAGE FRAME

Page Directory or Page Table Entry For The 80486 Microprocessor

31 012345678910 11 12

•The contents of the set select field in TR5 determine which internal cache line is written
or read through TR3. The 7 bit test field selects one of the 128 different 16 byte wide
cache lines. The entry select bits of TR5 select an entry in the set or the 32 bit location in
the read buffer.

•The control bits in TR5 enable the fill buffer or read buffer operation (00)
•Perform a cache write (01), Perform a cache read (10)
•Flush the cache (11).
•The cache status register (TR4) hold the cache tag, LRU bits and a valid bit. This
register is loaded with the tag and valid bit before a cache a cache write operation and
contains the tag, valid bit, LRU bits, and 4 valid bits on a cache test read.
•Cache is tested each time that the microprocessor is reset if the AHOLD pin is high for 2
clocks prior to the RESET pin going low. This causes the 486 to completely test itself
with a built in self test or BIST.

GENERAL PURPOSE REGISTERS

INSTRUCTION POINTER AND FLAG

SEGMENT REGISTERS
CODE

DATA
SEGMENT

CS
SS

DS
ES
FS
GS

EIP

EFLAGS

IP

FLAG

016 31 15

ES
EB
ED
ES
ED
EC
EB
EAX

SP
BP
DI
SI
DX
CX

BX
AX

016 31 15

STACK
SEGMENT

•The BIST uses TR3, TR4, TR5 to completely test the internal cache. Its outcome is
reported in register EAX. If EAX is a zero, the microprocessor, the coprocessor and
cache have passed the self test.
•The value of EAX can be tested after reset to determine if an error is detected. In most of
the cases we do not directly access the test register unless we wish to perform our own
tests on the cache or TLB.

031

31

31 0

0

CoEntSet select

Tag Valid
LR
Bit

Vali
bit

3711

11 10 24 3

Cache test register of the 80486 microprocessor

TR 3

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/1

M1 ARCHITECTURE OF MICROPROCESSORS

a. General definitions of mini computers etc,.

Q1. What are the advantages and the limitations microcontroller over a microprocessor?

Q2. Describe the main blocks in a digital signal processor that are not in a general microprocessor

b. Overview of 8085 Microprocessor

Q1. List the internal registers in 8085 microprocessor and their abbreviations and lengths.

Describe the primary function of each register.

Q2. Differentiate between NMI and MI interrupts

Q3. Explain how with external hardware TRAP can be masked

Q4. Interface a Speaker to SOD pin of 8085 Microprocessor.

Q5. Explain DMA function in 8085 microprocessor with timing diagrams

Q6. Explain the timing diagrams of 8085 when it is executing Memory mapped I/O and I/O

mapped I/O instructions

c. Overview of 8086 Microprocessor

Q1. List all the registers associated with the four segment registers

Q2. List the internal registers in 8086 Microprocessor

Q3. What are the main blocks in BIU and EU

Q4. Explain the coordination between BIU an EU

d. Signals and pins of 8086 microprocessor

Q1. How do you configure 8086 into minimum and maximum modes

Q2. Bring out the differences between 8086 and 8088 processors

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/2

Q3. Explain all the features in 8284

Q4. Why and when wait states are required. How do you insert wait states

M2. Assembly language of 8086

a. Description of Instructions

Q1. If BH = 0F3H what is the value of BH in hex after the instruction SAR BH, 1

Q2. IF AL = 78H and BL=73H explain how DAS instruction (after subtracting BL from AL)

adjusts to the BCD result

Q3. If CL=78H what is the value of CL after the instruction ROL CL, 3

Q4. Why AAD is to be executed before DIV instruction while converting unpacked BCD to

Binary number

Q4. Under what conditions REPE MOVS executes

Q5. Explain XLAT instruction to linearize transducer characteristics

Q6. Explain intra segment and inter segment branch instructions with examples the instructions

related to arithmetic and logical shift.

Q7. Explain all addressing modes with the assembler syntax and how effective address is

calculated

b. Assembly directives.

Q1. Explain EQU directive with example

Q2. Explain SEGMENT directives with examples

Q3. Explain coding template for 8086 instruction

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/3

c. Algorithms with assembly software programs

Q1. Write an algorithm to compute Fibonacci numbers using a recursive procedure. Write 8086

assembly program for the above

Q2. Write an algorithm and assembly program to convert an unpacked 4 digit number to Binary

number.

Q3. Write an algorithm and assembly program to convert a 16 bit number to a maximum of 5

unpacked digits

Q4. Write an algorithm and assembly program to convert an unpacked 4 digit number to Binary

number.

Q5. Write an algorithm and assembly program to find the square root of a 16 bit number using

shift and subtract method.

Q6. Write an algorithm and assembly program to reverse the bits in a 16 bit number and check

whether it is a palindrome.

Q7. Write an algorithm and assembly program for a cash bill of n materials. Rupees is a 4 digit

and paisa is a 2 digit number which are stored in two different arrays. Find the total amount

for the n materials. Subtract 10% discount on the total and give the actual amount to be paid.

Hint Shift the total amount by one digit to get the 10% discount and get the actual amount.

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/4

M3. Interfacing with 8086

a Interfacing with RAM’s and ROM’s

Q1. What are the differences in interfacing RWMs while 8086 is in minimum and maximum

modes

Q2. Sketch and explain the interface of 32K x 16 RWMs using a decoder in minimum mode.

What is the maximum access time of ROMs such that it does not require wait states when

8086 operates at 8 MHz

Q3. Sketch and explain the timing diagrams in the above interface Question 2

Q4. Sketch and explain the 8086 bus activities during write machine cycle

b Interfacing with peripheral IC’s like 8255 etc,.

Q1. What are the steps in interfacing peripherals with the micro processor

Q2. Sketch and explain the interface of PPI 8255 to the 8086 microprocessor in minimum mode.

Interface 4 7 segment LEDs to display as a BCD counter

Q3. In the above question Q2 interface two keys UP and DOWN to the PPI. Write an 8086

assembly program segment such that when UP is pressed the counter counts up every second.

Similarly when DOWN key is pressed the counter decrements every second

Q4. Sketch and explain the interface of 8279 to the 8086 microprocessor in minimum mode.

Interface 8x8 key pad and 16x 7 Seg LED display. Write an 8086 assembly program to read

the key codes of keys and display -NPTEL-INDIA

Q5. Sketch and explain the interface of PIT 8254 to the 8086 microprocessor in minimum mode.

Cascade two counters in the PIT. Write a program segment two get one minute delay

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/5

M4. Coprocessor 8087

a. Architecture of 8087

Q1. Give five differences between the main processor and the coprocessor

Q2. How does 8086 distinguish its instructions from 8087 instructions as it fetches from memory

Q3. What is the role of busy pin 8087, when it is interfaced with 8086

Q4. In which mode 8086 is interfaced with 8087 and why

Q5. Explain major blocks of 8087

b. Data types, instructions and programming

Q1. What are the minimum and maximum values can be represented in all types of data

Q2. What are the different steps involved in converting a short real number to a decimal number

Q3. What are the different steps involved in converting a decimal number to a long real number

Q4. Write an 8086/87 assembly program to compute the total surface area of a sphere. The

formula is 4*PI* R2 where R is a real number

Q5. What are the differences between rounding and truncation. Explain with examples

M5. Architecture of Microcontrollers

a Overview of 8051 micro controller architecture

Q1. What are the advantages and disadvantages of using Harvard architecture in 8051

Q2. How much maximum external program memory can be interfaced

Q3. Explain PSW SFR. Give the application differences between Carry and Overflow flags

Q4. What are the power consumptions in power down and idle modes

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/6

Q5. Explain Quasi Bidirectional ports of 8051

Q6. What is the status of all registers on reset

Q7. What is the maximum delay the Timer0 produces when 8051 is operated at 12MHz

Q8. Explain how in Serial communication mode 0 expands I/O lines with the help of shift

b Overview of 8096 micro controller architecture

Q1. How many bytes are there in the internal memory

Q2. Explain all the bits in the PSW

Q3. How much program memory is in the chip and how much more can be interfaced externally

Q4. List and explain all SFRs

Q5. How DAC is realized using PWM output of 8096

Q6. What is the maximum delay the Timer0 produces when 8096 is operated at 12MHz

M6. Assembly language of 8051

a. Description of instructions

Q1. On what condition JZ quit become true

Q2. What are the values of RS0 and RS1 of PSW when 19H location is treated as a register

Q3. Explain JBC bit, exit instruction

Q4. Does DA A instruction converts binary number to BCD number? Explain under what

conditions the BCD numbers gets adjusted after BCD addition

Q5. Differentiate between RET and RETI instructions

Q6. What are program branch ranges of SJMP, AJMP and LJMP instructions

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/7

b. Assembly Directives

Q1. List all the header files required to cross compile C program

Q2. Using the directives initialize a Look Up Table

c. Algorithms with 8051 assembly language programs

Q1. Write an 8051 assembly program to check a byte is a palindrome. Palindrome is a byte or a

word or words when read left or right it will be the same. Like for e.g. C3H

 (11000011b) or MALAYALAM.

Q2. Write an 8051 assembly program to produce a software delay of 1 minute.

Q3. Write an 8051 assembly program to multiply two 16 bit numbers, using shift left and add

algorithm

Q4. Write an 8051 assembly program to compute the square root of a 16 bit number using shift

left and subtract method

Q5. Write an 8051 assembly program to find LCM of two 16 bit numbers.

Q6. Write an 8051 assembly program to search a key in a array of 16 bit numbers using Binary

search algorithm

M7. Interfacing with 8051

a. Interfacing with peripherals like keyboards, LEDs, 7 segment LEDs, LCDs, ADCs, etc,.

Q1. Sketch and explain the interface of 5x4 key matrix using 74923.

 Write an 8051 assembly program segment to input the code of keys.

Q2. Sketch and explain the interface of 4X7Segment LEDs in multiplexed mode.

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/8

Write an 8051 assembly program segment to flash CEDT at 5Hz

Q3. Sketch the interface of a 16ch x 1line LCD to the 8051 microcontroller. Write an 8051

assembly program segment to display any Logo

Q4. Sketch the interface of a serial ADC MAX 192 to the 8051 microcontroller. Write an 8051

assembly program segment to read an analog signal through the ADC

Q5. Sketch the interface of a dual DAC 7303 to the 8051 microcontroller. Output the DAC

outputs are connected to an analog comparator. A LED is connected to the output of the

comparator for indication. Write an 8051 assembly program segment to flash if one analog

input is greater than the other.

Q6. Sketch the interface of a RTC 1302 to the 8051 microcontroller. Write an 8051 assembly

program segment to read and write real time into the RTC.

M8. High end processors

a. Introduction to 80386 and 80486

Q1. List all the additional features that the 80386 microprocessor has over 8086

Q2. What is the main difference between the 80386 DX and 80386 SX microprocessor

Q3. How much the physical memory can 80386 address in real mode and in protected mode?

Q4. How are the tasks in 80386 system protected from each other.

Q5. How is an 80386 switched into virtual 8086 mode during task switch.

Q6. Describe three major additions or improvements that the 80486 processor has over 80386

processor.

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/1

M1 ARCHITECTURE OF MICROPROCESSORS

a. General definitions of mini computers etc,.

Q1. Differentiate between a microprocessor and a micro controller
Q2. Differentiate between a microprocessor and digital signal processor

b. Overview of 8085 Microprocessor

Q1. List the internal registers in 8085 microprocessor and their abbreviations and lengths.

Describe the primary function of each register.
Q2. List five levels of interrupts in 8085 microprocessor with priority.
Q3. Interface a key to SID pin of 8085 Microprocessor.
Q4. Interface a LED to SOD pin of 8085 Microprocessor.
Q5. In 8085 microprocessor which has higher the priority NMI or DMA
Q6. What are the differences between Memory mapped I/O and I/O mapped I/O

c. Overview of 8086 Microprocessor

Q1. Explain the need of segmentation
Q2. List the internal registers in 8086 Microprocessor
Q3. Explain the roles of BIU and EU
Q4. What are the advantages of pipelining
Q5. Explain all the flags in 8086

d. Signals and pins of 8086 microprocessor

Q1. List the signals in minimum and maximum modes
Q2. Explain the roles of pins TEST, LOCK
Q3. Which are the pins of 8086 that are to be connected to interface 8284 and explain

their functions
Q4. Which are the pins of 8086 that are to be connected to 8087 and explain their

functions

M2. Assembly language of 8086

a. Description of Instructions

Q1. If AL = -9 and BL = 4710 after IDIV BL what are the values of AL and AH.
Q2. IF AX = -20010 and CX = 670H after IMUL CX what are the values of AX and DX
Q3. Explain AAA, AAD, AAM, AAS instructions with examples.
Q4. Explain DAA, DAS instructions with examples.
Q5. Explain the instructions related to the fixed and variable ports.
Q6. Explain the instructions related to arithmetic and logical shift.
Q7. How REP instruction is used along with string instructions.

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/2

Q8. Explain different types of CALL instructions

b. Assembly directives.

Q1. What is the length of bytes reserved for the following directive STORE DW 100

DUP(0)
Q2. What is the difference between ENDS and ENDP directives.
Q3. Explain PTR directive

c. Algorithms with assembly software programs

Q1. Write an algorithm to convert BCD to Binary numbers. Write 8086 assembly

program to convert two digit BCD number to hexadecimal number
Q2. Write an algorithm to convert Binary number to BCD number. Write 8086 assembly

program to convert one byte Binary number to BCD.
Q3. Write an algorithm to evaluate a factorial of an integer number N. Write an assembly

program using recursive procedure.
Q4. Write an algorithm to find GCD of two numbers. Write an assembly program to find

GCD of two words.
Q5. Write an algorithm and assembly program to sort the numbers in an array in

descending order using bubble sort method

M3. Interfacing with 8086

a Interfacing with RAM’s and ROM’s

Q1. Sketch and explain the interface of 32K x 16 ROMs using a decoder in minimum

mode. What is the maximum access time of ROMs such that it does not require wait
states when 8086 operates at 8 MHz

Q2. Sketch and explain the interface of 8K x 16 RAMs using a decoder in minimum
mode. What is the maximum access time of RAMs such that it does not require wait
states when 8086 operates at 8 MHz

Q3. Sketch and explain the 8086 bus activities during read machine cycle

b Interfacing with peripheral IC’s like 8255 etc,.

Q1. Sketch and explain the interface of PPI 8255 to the 8086 microprocessor in minimum

mode. Interface 8 LEDs to the port B of 8255. Interface 8 keys to the port A. Write an
8086 assembly program to read the key status and output on to the 8 LEDs
i) Interface an 8 bit ADC 808 to port A. Derive control signals from port C. Write an
8086 assembly program segment to read an analog signal.
ii) Interface an 8 bit DAC 08 to port A. Write an 8086 assembly program segment to
output a ramp.
iii) Interface 16 ch x 1Line LCD to port A. Derive control signals from port C. Write
an 8086 assembly program segment to flash WELCOME TO CEDT

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/3

Q2. Sketch and explain the interface of PIT 8254 to the 8086 microprocessor in minimum

mode. Write an 8086 assembly program to generate a clock of 10 Hz on the OUT 0
pin. Write an 8086 assembly program to generate a hardware triggerable mono-shot
of 1 msec pulse width.

Q3. Sketch and explain the interface of 8279 to the 8086 microprocessor in minimum
mode. Interface 8x8 key pad and 16x 7 Seg LED display. Write an 8086 assembly
program to read the key codes of keys and display -IISc-BANGALORE-

Q4. Sketch and explain the interface of PIC 8259 to the 8086 microprocessor in minimum
mode. Show the cascading of additional eight 8259s to provide 64 external interrupts.
Write an 8086 assembly program to initialize master 8259 and slaves.

M4. Coprocessor 8087

a. Architecture of 8087

Q1. Explain the stack in 8087
Q2. How 8086 and 8087 instructions stored in programming are executed simultaneously

in 8086/8087 system
Q3. Explain precision and rounding controls
Q4. What are the exception flags in status register
Q5. Explain how 8087 is interfaced to 8086

b. Data types, instructions and programming

Q1. List all data types supported by 8087 and their ranges
Q2. Convert 278.375 to short real
Q3. Convert 4332A000H to real number
Q4. List all the mathematical instructions in 8087
Q5. Write an 8086/87 assembly program to compute X Y where X and Y are real numbers
Q6. Write an 8086/87 assembly program to find the hypotenuse of a right angled triangle

with two sides given.

M5. Architecture of Microcontrollers

a Overview of 8051 micro controller architecture

Q1. How Harvard architecture is implemented in 8051
Q2. List the features of 8051
Q3. What are the alternate functions of Port 3, port 2, and Port 0
Q4. List all SRF’s
Q5. How do you differentiate between SFR bits and internal memory bits

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/4

Q6. What are the advantages of register banks
Q7. What is the maximum program memory and data memory can be interfaced

externally
Q8. List all interrupt vectors.

b Overview of 8096 micro controller architecture

Q1. What is RALU architecture in 8096
Q2. List all the features of 8096
Q3. What is reset location of 8096
Q4. Explain HSI and HSO in 8096
Q5. How DAC is realized using PWM output of 8096
Q6. Explain three operands instruction in 8096
Q7. Explain watch dog timer in 8096
Q8. Explain ADC in 8096
Q9. What is the maximum baud rate possible in 8096
Q10. Bring out the differences between T1 and T2 timers in 8096.

M6. Assembly language of 8051

a. Description of instructions

Q1. Explain MUL AB and DIV AB instructions
Q2. Explain two indirect indexed instructions
Q3. Explain all flags in 8051
Q4. Explain all Boolean instructions
Q5. Explain all compare instructions
Q6. Write a program to decrement the value of DPTR

b. Assembly Directives

Q1. Explain 8051 assembler directives EQU, SET and BIT with one example each.
Q2. Explain 8051 assembler directives DBIT and DS with one example each.

c. Algorithms with 8051 assembly language programs

Q1. Write an 8051 assembly program to exchange the data using PUSH and POP

instructions.
Q2. Write an 8051 assembly program to convert two digit BCD number to hexadecimal

number
Q3. Write an 8051 assembly program to convert one byte Binary number to BCD.
Q4. Write an 8051 assembly program to evaluate the factorial of an integer number N

using recursive procedure.
Q5. Write an 8051 assembly program to find GCD of two numbers.

Microprocessor and Microcontrollers Question Bank

M. Krishna Kumar/IISc V1/Feb2005/5

Q6. Write an 8051 assembly program to sort the number in an array using bubble sort
method

M7. Interfacing with 8051

a. Interfacing with peripherals like keyboards, LEDs, 7 segment LEDs, LCDs,

ADCs, etc,.

Q1. Sketch and explain the interface of 8x4 key matrix using 8:1 multiplexer, and a 3:8

decoder to 8051 microcontroller. Write an 8051 assembly program segment to input
the code of keys.

Q2. Switch the interface of a single red LED to 8051 microcontroller. Write an 8051
assembly program segment to blink the LED at 5Hz.

Q3. Sketch the interface of a 4x7 segment LEDs to the 8051 microcontroller. Write an
8051 assembly program segment to display I.I.Sc

Q4. Sketch the interface of a 16ch x 1line LCD to the 8051 microcontroller. Write an
8051 assembly program segment to display NPTEL

Q5. Sketch the interface of an ADC 808 to the 8051 microcontroller. Write an 8051
assembly program segment to read an analog signal through the ADC

Q6. Sketch the interface of a DAC 08 to the 8051 microcontroller. Write an 8051
assembly program segment to output a ramp signal through the DAC.

Q7. Sketch the interface of a RTC 1307 to the 8051 microcontroller. Write an 8051
assembly program segment to read and write real time into the RTC.

M8. High end processors

a. Introduction to 80386 and 80486

Q1. List all the additional features that the 80386 microprocessor has over 8086
Q2. What is the main difference between the 80386 DX and 80386 SX microprocessor
Q3. How much the physical memory can 80386 address in real mode and in protected

mode.
Q4. How are the tasks in 80386 system protected from each other.
Q5. How is an 80386 switched into virtual 8086 mode during task switch.
Q6. Describe three major additions or improvements that the 80486 processor has over

80386 processor.

	Learning Material - Microprocessors and microcontrollers.pdf
	Learning Material - Microprocessors and Microcontrollers
	Syllabus
	Lecture Plan
	Module 1: Architecture of Microprocessors
	8085
	8086 Microprocessor
	Minimum and Maximum Modes
	Architecture of Microprocessors
	Webpages

	Module 2: Assembly Language of 8086
	Slides
	Webpages

	Module 3: Interfacing with 8086
	Interfacing with RAM, ROM
	8254
	8259A
	8279
	Interface LED, LCD
	Interfacing 8255
	Interfacing a Microprocessor To Keyboard
	Webpage

	Module 4: Coprocessor 8087
	8087
	Webpages

	Module 5: Architecture of Microcontrollers
	Module 6: Assembly Language of 8051
	Module 7: Interfacing with 8051
	Module 8: High end processors
	Architecture of 80386
	80486 Microprocessor
	Webpages

	Test Problems
	Question Bank

	Back to main menu

